

REPORT

2017 WATER QUALITY MONITORING REPORT, REGIONAL BIOSOLIDS COMPOSTING FACILITY, 551 COMMONAGE ROAD, VERNON, BC

Submitted to:

City of Kelowna 1435 Water Street Kelowna, BC V1Y 1J4

Submitted by:

Golder 590 McKay Avenue, Suite 300 Kelowna, British Columbia, V1Y 5A8 Canada

1542527-006-R-Rev1-4000

22 March 2018

Distribution List

1 eCopy - City of Kelowna

1 eCopy - Golder Associates Ltd.

Table of Contents

1.0	INTRO	DUCTION
2.0	BACK	GROUND
3.0	2017 S	COPE OF WORK
4.0	SURF	ACE WATER ASSESSMENT CRITERIA7
5.0	FIELD	MONITORING
	5.1	Field Monitoring8
	5.2	Field Sampling Methods9
6.0	RESUI	LTS9
	6.1	Drainage Pond Quality9
	6.2	Davidson Pond and Rose's Pond Quality10
	6.2.1	Davidson Pond11
	6.2.2	Rose's Pond11
	6.3	Evaporation Pan Monitoring13
7.0	DISCU	ISSION13
8.0	CONC	LUSIONS
9.0	RECO	MMENDATIONS FOR 201815
10.0	LIMITA	ATIONS AND USE OF REPORT16
11.0	CLOS	URE17

TABLE (WITHIN TEXT)

TABLES (AFTER TEXT)

Table 1: 2014 – 2017 Results of Water Analyses – Drainage Pond

Table 2: 2014 – 2017 Results of Water Analyses – Davidson Pond and Rose's Pond

FIGURES (AFTER TEXT)

Figure 1: Key Plan

Figure 2: Site Plan

APPENDICES

APPENDIX A

ALS Laboratory Certificates of Analysis (2017)

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) is pleased to provide the City of Kelowna (CoK) with this monitoring report that documents the results of water quality monitoring completed in 2017 at the Regional Biosolids Composting Facility (RBCF) located at 551 Commonage Road in Vernon, BC (hereafter referred to as the Site). The monitoring data were collected by CoK personnel and provided to Golder for compiling this report.

It is our understanding that the purpose of the monitoring program is to assess potential leachate infiltration of stormwater runoff and leachate that is generated at the Site. The monitoring program satisfies the requirements of Ministry of Environment (MoE) discharge Permit 108537 with regards to implementing a surface water monitoring program at the Site (Section 4.2 of Permit). The monitoring program also addresses recommendations made by the MoE in a letter to the CoK entitled "*Response to the Notice of Proposed Expansion of Biosolid Composting Facility*", dated 27 April 2010; and by Golder in subsequent letters and annual monitoring reports prepared for the CoK for submission to MoE.

This report satisfies the reporting requirements of Permit 108537, including data interpretation and trend analysis and an evaluation of the impacts of discharges on the receiving environment (Section 5.5.3 of Permit).

2.0 BACKGROUND

The RBCF was constructed in 2006 and is located on Commonage Road in Vernon, BC (Figures 1 and 2). The Site composts wastewater treatment plant biosolid material and currently consists of an administration building, sludge receiving building, a mixing building, primary and secondary aeration cells, and a compost curing area. An expansion of the facility and facility upgrades were completed in 2010, at which time the entire composting curing area was paved. Prior to the construction of the RBCF, a septage disposal facility was operated at the Site by the City of Vernon (CoV) and the North Okanagan Regional District (NORD).

The Site is surrounded primarily by undeveloped and agricultural land. Surface water bodies in close proximity to the Site include the following (refer to Figures 1 and 2):

- Drainage Pond: located approximately 100 m west of the RBFC, between the Site and Commonage Road, and used to store stormwater runoff generated at the Site.
- Rose's Pond: located approximately 200 m northwest of the RBFC (and approximately 100 m northwest of the Drainage Pond), on the northwest side of Commonage Road.
- Davidson Pond: a privately-owned pond on the Davidson Property, located approximately 100 m south of the RBFC (and approximately 200 m south and southwest of the Drainage Pond).

Our understanding of the Site operations is as follows: stormwater runoff generated at the Site is directed towards a drainage trench along the Site's south-western boundary, and then gravity-fed into the Drainage Pond (Figure 2). Water entering the drainage trench and Drainage Pond consists primarily of stormwater that may contain leachate from the compost material stored on the curing pads; and potentially process water runoff, as water is regularly added to the compost material, particularly in the hot summer months. Leachate from the primary and secondary aeration cells at the Site is directed to a holding tank and then truck-hauled for treatment at NORD's septage facility located at 1700 Polson Drive, Vernon BC, which then discharges into the COV's Water Reclamation Centre located at 2100 43rd Street, Vernon BC.

In the summer months, treated (chlorinated) effluent from the CoV's MacKay Reservoir (located approximately 2 km west-southwest of the Site) is periodically used to flush the drainage trench; in the winter months, effluent on route to the MacKay Reservoir from CoV's Water Reclamation Centre is diverted and treated (filtered and/or chlorinated) at the Site, then used to flush the drainage trench. When the water level at the Drainage Pond is near capacity, water is pumped to the MacKay Reservoir.

In 2009, the CoK retained Golder to complete an initial review of the Site, which was documented in the report titled "*Interim Report on Leachate Drainage Pond, Kelowna – Vernon Compost Facility*", dated 17 February 2010. The purpose of the report was to compile local and regional data on the hydrogeology in the area, monitor water quality, and monitor drainage and pond water levels to assess potential infiltration of leachate. The 2010 report indicated that the RBFC and the Drainage Pond are located on dense glacial tills that inhibit water infiltration into the groundwater aquifer located within the underlying bedrock. It was inferred that water infiltrating into the ground would likely migrate along the top of the glacial till and may eventually discharge into local ponds (i.e., Davidson Pond and Rose's Pond), with a small component of infiltration migrating vertically through the till into deeper bedrock fractures.

Between 2010 and 2017, the CoK conducted monitoring programs at the Drainage Pond, Davidson Pond and Rose's Pond (except in 2013 and 2016), to assess whether water at the Drainage Pond may be infiltrating into the ground and discharging into Rose's Pond and/or Davidson Pond. The results of these monitoring programs have been documented in various reports prepared by Golder and submitted to the CoK.

In July 2010, CoK personnel installed an evaporation pan at the Drainage Pond to monitor daily water levels in the pan, along with water levels at the Drainage Pond, as an indicator of water loss due to evaporation or potential infiltration. In 2010, it was found that the regular flushing of the one-inch and/or six-inch drainage lines, combined with the outflow pump operating intermittently, did not allow for a meaningful assessment of water loss at the Drainage Pond. For this reason, subsequent recommendations were to conduct observations on days when the drainage lines were not flushing and the pump was shut-off, and when no rainfall was expected.

Pursuant to the 9 June 2016 amendments to the Organic Matter Recycling Regulation, Permit 108537 was issued to the CoK on 12 July 2017 authorizing the discharge of contaminants to the air from the Site, and specifying surface water monitoring and reporting requirements at the Site.

3.0 2017 SCOPE OF WORK

The 2017 monitoring scope of work was based on Golder's recommendations outlined in our report entitled "2016 Water Quality Monitoring Report, Vernon Compost Facility, 551 Commonage Road, Vernon, BC", dated 7 June 2017, as follows. The field portion of the scope of work was completed by CoK personnel:

- Collect monthly samples between May and October of 2017 at the Drainage Pond, Rose's Pond and Davidson Pond for analysis of potential indicators of biosolids (i.e., septage) contaminants including:
 - Phosphorous, chloride, ammonia, nitrate, nitrite, total kjeldahl nitrogen and total nitrogen.
 - Biological oxygen demand (BOD) and chemical oxygen demand (COD).
 - Microbiological analyses (total coliforms and Escherichia coli [E. coli]).
 - Metals (total and dissolved; with lower detection limits for total beryllium and total selenium).
 - PH, conductivity, total suspended solids (TSS) and hardness.

- Field measurement of pH and temperature of water during sample collection.
- Review of analytical results.
- Conduct an observation period of Drainage Pond levels and evaporation pan readings.

It is noted that the recommendations for 2017 included that Drainage Pond level measurements and pan readings be recorded over three 48-hour periods; once in the spring months (i.e., May or June), once in the summer months (i.e., July or August) and again in the fall (i.e., September or October). Site operations did not allow for three monitoring periods in 2017; rather, only a limited set of data was obtained during the summer of 2017.

Based on the above scope of work, Golder has prepared this monitoring report for submission to MoE by the CoK. The monitoring report provides discussions on:

- Water quality results for the Drainage pond.
- Water quality results for Davidson Pond and Rose's Pond, including potential impacts from the Drainage Pond.
- The 2017 Drainage Pond levels in comparison to evaporation pan readings, as well as other published evapotranspiration rates.
- Recommendations for the 2018 water quality monitoring program.

4.0 SURFACE WATER ASSESSMENT CRITERIA

Pond water quality data were tabulated by Golder and compared to the following standards and/or criteria:

- Freshwater aquatic life (AW) standards in the BC Contaminated Sites Regulation (CSR) (B.C. Reg. 375/96; last amended 1 November 2017 by B.C. Reg. 253/2016, as amended by B.C. Reg. 196/2017).
- Drinking water (DW) standards in the CSR.
- "British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture, Summary Report", dated January 2017 (BCWQG) for freshwater aquatic life (AW) criteria. Where applicable, the most conservative of the long-term average and short-term maximum guidelines are referenced.
- Working Water Quality Guidelines for British Columbia (June 2017)" for freshwater aquatic life (AW) criteria.

According to BC Technical Guidance Document 15: *Concentration Limits for the Protection of Aquatic Receiving Environments* (Version 2.0; 1 November 2017):

- For maintained watercourses, the CSR AW standards are applicable to surface water, porewater and groundwater.
- Surface water in aquatic receiving environments other than maintained watercourses should be evaluated against the BCWQG.

For the purposes of this assessment, the Drainage Pond is considered to be a maintained watercourse; and as there is no overland flow from the Drainage Pond, and potential contaminants can only migrate through groundwater to other surface water bodies or drinking water wells, the water quality data from the Drainage Pond has been compared to the CSR AW and DW standards. Rose's Pond and Davidson Pond are considered to be aquatic receiving environments, and water quality data for these two ponds have been compared to the BCWQG, and conservatively against the CSR AW and DW standards.

As of 1 November 2017, Stage 11 amendments to the CSR have been brought into force, resulting in updated standards for groundwater parameters. This report was prepared based on the new CSR regulations and associated standards. In addition, re-screening of the water quality data from 2014 through 2016 was completed and the results of re-screening are included in this report where applicable.

For the comparison of ammonia concentrations, the BCWQG AW guideline for ammonia is pH and temperature dependent and was derived using the pH and temperature measured in the field during collection of each water sample. The CSR AW standard for ammonia is pH dependent and assumes a temperature of 10 degrees Celsius; the CSR AW standard for ammonia was derived using the field pH.

For the comparison of metals concentrations, the total metals (unfiltered) concentrations in the samples were used for comparison to the CSR standards and the BCWQG AW guidelines, in accordance with standard practice for surface water samples. Total metals parameter exceedances of the applicable criteria are shown in tables and discussed in the body of this report. For inclusiveness, the dissolved metals (filtered) concentrations were also compared to the CSR standards and the BCWQG AW guidelines; however, while dissolved metals parameter exceedances are shown in applicable tables, they are not further discussed in the body of this report.

5.0 FIELD MONITORING

5.1 Field Monitoring

Field monitoring in 2017 was conducted between May and October 2017 and included the following tasks:

- Sampling of the Drainage Pond monthly in May through October 2017 (for a total of six samples) and analysis
 of samples for septage contaminants listed under Section 3.0.
- Sampling of Davidson Pond and Rose's Pond monthly in May through October 2017 (for a total of six samples) and analysis of samples for septage contaminants listed under Section 3.0.
- Measuring the pH and temperature (in degrees Celsius) of pond water during sample collection.
- In the month of July (between 4 and 7 July 2017), without stormwater discharge occurring, pond levels were measured during a 69-hour observation period. Within the 69-hour period, Drainage Pond level measurements and evaporation pan measurements were collected at the same time each day.

5.2 Field Sampling Methods

CoK staff collected all water levels and water samples described in this report. Grab samples were collected from below the water surface near the shoreline of each pond and placed in bottles supplied by ALS Environmental Laboratory (ALS) of Burnaby, BC. The sample bottles were placed in chilled coolers and transported via overnight courier. The ALS laboratory analytical reports were provided to Golder by the CoK. During each sampling event, CoK staff measured pH and temperature of the pond water.

Golder tabulated the 2017 data to allow for an assessment of the water quality results; tabulated data are provided in this report along with the 2014, 2015, and 2016 data.

6.0 RESULTS

6.1 Drainage Pond Quality

A summary of the analytical results for water samples collected from the Drainage Pond in 2017 is presented in Table 1, attached. The ALS laboratory analytical reports (laboratory report numbers L1924064-1, L1946645-1, L1965494-1, L1984896-1, L1994913-1, and L2016326-1) are included in Appendix A.

The following is a summary of the 2017 analytical results. Results were compared to the CSR AW and DW standards, where applicable.

- Ammonia (as N) concentrations exceeded the applicable CSR AW standard during the June, September, and October sampling events (there is no CSR DW standard for ammonia as N).
- Total lithium concentrations exceeded the CSR DW standard during the May, June, July, and August sampling events (there is no CSR AW standard for lithium). Although total lithium concentrations in September and October 2017 were below the laboratory reporting limit (<0.050 mg/L), but above the applicable standard (0.008 mg/L), they were not flagged as exceedances at this time. As part of the Stage 11 amendments to the CSR, the CSR DW standard for lithium was lowered to 0.008 mg/L from 0.73 mg/L, the latter of which was used in previous reports.</p>
- As part of the Stage 11 amendments to the CSR, the CSR AW standard for beryllium was lowered to 0.0015 mg/L from 0.053 mg/L, the latter of which was used in previous reports. The laboratory reported detection limits for beryllium in September and October 2017 (and in 2014 through 2016) (i.e., 0.005 mg/L) were greater than the current CSR AW standard of 0.0015 mg/L; however, as beryllium concentrations in the May through August 2017 samples were less than the current CSR AW standard, beryllium is not inferred to be a parameter of concern at the Site.
- All other concentrations of nutrients parameters, chloride and total metals in the Drainage Pond were below the applicable CSR AW and DW standards.
- Nitrate (as N) concentrations were elevated in May, June and October as compared to those in July, August, and September, but still well below standards.
- Concentrations of total coliforms and E. coli in the samples collected from the Drainage Pond were the lowest in May, with most probable number (mpn) per 100 mL of 980 for total coliforms and 23 mpn/100 mL for E. coli. The highest concentrations were measured in June with total coliforms of 90,000 mpn/100mL and <10,000 mpn/100mL of E. coli.</p>

Dissolved metals parameter concentrations (including hardness) were significantly lower in October 2017, compared to the total metals parameter concentrations in October 2017 and to the remaining results at the Drainage Pond. The cause of the lower concentrations in October 2017 is not known at this time; however, it may be due to sample collection, preservation and/or filtration methods.

The following is a summary of notable trends observed between 2014 and 2017.

- Parameters concentrations were variable between 2014 and 2017, with elevated concentrations generally apparent during the spring sampling events. Ammonia (as N) concentration trends at the Drainage Pond are shown in Figure A below.
- Parameter concentrations measured in 2017 were generally within the range of concentrations measured in 2014, 2015, and 2016, except for the chloride concentration in June 2017 (132 mg/L), which was higher than those measured in 2014, 2015, 2016, and the remainder of 2017 monitoring events. Chloride concentration trends at the Drainage Pond are shown in Figure A below.
- In previous years (2014 2016), the reported analytical detection limit for lithium (0.05 mg/L) was greater than the current CSR DW standard of 0.008 mg/L, and thus, it is not known whether the previous parameter concentrations would have exceeded the current CSR DW standard of 0.008 mg/L at that time.

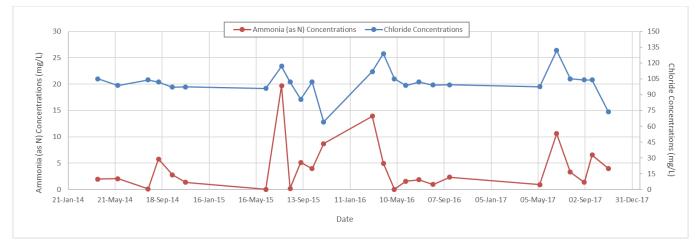


Figure A. Ammonia (as N) and chloride concentration trends in water at the Drainage Pond (2014 - 2017 data).

6.2 Davidson Pond and Rose's Pond Quality

A summary of the analytical results for water samples collected from the neighbouring Davidson and Rose's Ponds in 2017 is presented in Table 2, attached. The ALS laboratory analytical reports (laboratory report numbers for Davidson Pond: L1924064-2, L1946645-2, L1965494-2, L1984896-2, L1994913-2, and L2016326-2; and for Rose's Pond: L1924064-3, L1946645-3, L1965494-3, L1984896-3, L1994913-3, and L2016326-3) are included in Appendix A.

The following is a summary of the 2017 analytical results. Results were compared to the BCWQG AW guidelines and the CSR AW and DW standards, where applicable.

6.2.1 Davidson Pond

Concentrations of most parameters were less than the BCWQG AW guidelines and CSR AW and DW standards during the six sampling events in 2017, except for the following parameters:

- Chloride concentrations exceeded the long-term average BCWQG AW guideline and the CSR DW standard, but were less than the short-term maximum BCWQG AW guideline and the CSR AW standard, during all sampling events.
- Total lithium concentrations exceeded the CSR DW standard during all sampling events.
- Total sodium concentrations exceeded the CSR DW standard during all sampling events. There are no BCWQG AW or CSR AW criteria for sodium.
- The reported analytical detection limit for total beryllium exceeded the applicable BCWQG AW guideline during all sampling events (with the exception of the August 2017 event).
- The reported analytical detection limit for total phosphorus exceeded the BCWQG AW guideline during all sampling events.
- As per the CSR Stage 11 amendments, there is no longer a CSR DW standard for magnesium; thus, total magnesium concentrations that were reported as exceedances in the 2015 and 2016 monitoring events are no longer considered exceedances. There is no CSR AW standard or BCWQG AW guideline for magnesium.
- Dissolved metals parameter concentrations (including hardness) were significantly lower in October 2017 compared to the total metals parameter concentrations in October 2017 and to the remaining results at Davidson Pond. The cause of the lower concentrations in October 2017 is not known at this time; however, it may be due to sample collection, preservation and/or filtration.
- Total coliform and E.coli counts at Davidson Pond were variable, but within the range of 2014 2016 results. The highest total coliform and E. coli counts were measured in July 2017 (24,200 mpn/100mL) and May 2017 (1000 mpn/100mL), respectively.

Parameter concentrations measured in 2017 at Davidson Pond were generally within the range of concentrations measured in 2014, 2015, and 2016. Ammonia (as N), chloride and total sodium concentration trends are provided in Figure B below. A slight decreasing trend is noted in ammonia (as N) concentrations, and a very slight decreasing trend is noted in sodium concentrations.

6.2.2 Rose's Pond

Concentrations of most parameters were less than the BCWQG AW guidelines and CSR AW and DW standards during the six sampling events in 2017, except for the following parameters:

- Chloride concentrations exceeded the long-term average BCWQG AW guideline and the CSR DW standard, but were less than the short-term maximum BCWQG AW guideline and the CSR AW standard, during all sampling events.
- Total lithium and total sodium concentrations exceeded the CSR DW standard during all sampling events.

- The BCWQG for arsenic has been removed in 2017, and as such, there were no exceedances of total arsenic concentrations in 2017, which had previously (2014, 2015, and summer of 2016) been identified to exceed the guideline.
- As there is no longer a CSR DW standard for magnesium; total magnesium concentrations that were reported as exceedances in the 2015 and 2016 monitoring events are no longer considered exceedances.
- The reported detection limits for total beryllium and total phosphorus exceeded the applicable BCWQG AW guidelines during most sampling events.
- Dissolved metals parameter concentrations (including hardness) were significantly lower in October 2017 compared to the total metals parameter concentrations in October 2017 and to the remaining results at Rose's Pond. The cause of the lower concentrations in October 2017 is not known at this time; however, it may be due to sample collection, preservation and/or filtration methods.
- Total coliform and E. coli counts at Rose's Pond were variable, but within the 2014 2016 results. The highest total coliform and E. coli counts were measured in July 2017 (29,900 mpn/100mL) and June 2017 (12 mpn/100mL), respectively.

Some parameter concentrations measured in 2017 at Rose's Pond appear to be on a decreasing trend (including chloride, arsenic, lithium, magnesium and sodium); while other parameter concentrations appear to be on an increasing trend (including calcium, manganese, molybdenum, potassium, silicon, strontium and uranium). Ammonia (as N), chloride and total sodium concentration trends are provided in Figure B below.

Figure B. Ammonia (as N), chloride and total sodium concentration trends in water at Davidson's Pond and Rose's Pond (2014 - 2017 data).

6.3 Evaporation Pan Monitoring

In 2017, a 69-hour observation period was conducted between 4 and 7 July 2017. The days selected were during times of no rainfall, and when the one-inch and six-inch drainage lines were not flushed and the pump was shut-off. The results for the observation period are presented in Table 3 below.

Date	Time	Pan Reading (mm)	Drainage Pond (mm)	Daily Temperature (⁰C) (low – high)
4-Jul-17	2:00 pm	252	532	12.4 – 31.7
5-Jul-17	2:00 pm	244	530	13.3 – 34.3
6-Jul-17	2:00 pm	234	526	16.2 – 36.9
7-Jul-17	11:00 am	230	522	17.2 - 33.8
Total D	ecrease (mm)	22	10	-
Daily Averag	ge Decrease (mm)*	7	3	-

 Table 3: Evaporation Pan and Drainage Pond Levels - 2017

Note:

Temperature data are for the Kelowna UBCO Station (Environment Canada)

*Approximate

The following summarizes the results of each observation period:

- Evaporation Pan: The total decline of water levels in the evaporation pan based on the evaporation pan measurements, was 22 mm over the observation period of 69 hours; and,
- Drainage Pond: The total decline of water levels at the Drainage Pond based on measurements collected from the staff gauge at the Drainage Pond was 10 mm over the observation period of 69 hours.

The evaporation pan and Drainage Pond measurement data provided above, as well as previous measurements, supports the inference that evaporation from the Drainage Pond accounts for most of the losses within the Drainage Pond (compared to infiltration).

7.0 DISCUSSION

The concentrations of typical septage contaminants (ammonia as N, BOD, nitrate, nitrite, total nitrogen and orthophosphate and microbiological parameters) at the Drainage Pond, Davidson Pond and Rose's Pond were generally within the range of concentrations previously measured in 2014, 2015, and 2016, and generally within the range of analysis from month to month during the sampling events in 2017 (except concentrations of ammonia, BOD, total coliforms and E. coli, which exhibited variability between the 2017 sampling events).

The ammonia (as N) concentrations at the Drainage Pond exceeded the CSR AW standard on three occasions in 2017. The ammonia (as N) concentrations at the Drainage Pond were much greater than the nitrate (as N) and

nitrite (as N) concentrations (as in 2014, 2015, and 2016), indicative that little nitrification is occurring. The total nitrogen concentrations at the Drainage Pond were greater than the combined ammonia, nitrate and nitrite concentrations (as in 2014, 2015, and 2016), indicative that a portion of the total nitrogen in the water samples was organic nitrogen.

CoK personnel have observed waterfowl at the Drainage Pond, Davidson Pond and Rose's Pond; and have noted that cattle have access to Davidson's Pond. It is likely that wildlife using these ponds have contributed to the elevated total coliform and E. coli counts measured at the ponds. As these parameters were generally higher at the Drainage Pond than at Davidson Pond and Rose's Pond, it is possible that elevated total coliform and E. coli counts at the Drainage Pond may also be due to Site runoff into the Drainage Pond.

As in 2014 – 2016, samples collected during the 2017 sampling events indicated that biosolids (i.e., septage) parameter concentrations were higher at the Drainage Pond than at Davidson Pond and Rose's Pond, as follows:

- Total nitrogen concentrations were more than approximately 2 times greater at the Drainage Pond than at Davidson Pond and Rose's Pond.
- BOD concentrations were generally higher (up to approximately 7 times greater) at the Drainage Pond than at Davidson Pond and Rose's Pond.
- Orthophosphate concentrations were approximately 1 to 3 orders of magnitude greater at the Drainage Pond than at Davidson Pond and Rose's Pond.
- Certain metals parameters were higher at the Drainage Pond than at Davidson Pond and Rose's Pond (including: aluminum, barium, boron, copper, iron, magnesium, manganese, molybdenum, phosphorus, silicon and zinc).

As in 2014 – 2016, samples collected during the 2017 sampling events indicated that certain inorganic and metals parameters were higher at Davidson Pond and Rose's Pond relative to the Drainage Pond, as follows:

- Chloride concentrations were approximately 2 to 3 times higher at Davidson Pond, and approximately 3 to 6 times higher at Rose's Pond, than at the Drainage Pond.
- Sodium concentrations were approximately 3 to 7 times higher at Davidson Pond, and approximately 5 to 10 times higher than at Rose's Pond, than at the Drainage Pond.
- Arsenic concentrations were slightly higher at Rose's Pond than at Davidson Pond; arsenic concentrations at both ponds were higher than at the Drainage Pond.
- Lithium concentrations were on average approximately 2 to 4 times higher at Davidson Pond and Rose's Pond than at the Drainage Pond.
- Potassium concentrations were on average approximately 2 times higher at Davidson Pond, and approximately 2 to 4 times higher at Rose's Pond, than at the Drainage Pond.

The cause of the suspect dissolved metals parameter concentrations in October 2017 is not known and may have been due to errors in sample collection, preservation and/or filtration. However, as only total metals exceedances are discussed in this report, the October 2017 total metals data can be relied upon for this annual monitoring report. Implementation of a quality assurance/quality control (QA/QC) program may help to address these issues in the future, should they occur again.

8.0 CONCLUSIONS

Water potentially infiltrating from the Drainage Pond may be considered a source of contamination for groundwater, particularly with respect to ammonia, which exceeded applicable standards on three occasions in 2017; however, as it has previously been assessed that evaporation from the Drainage Pond is inferred to account for most of the losses within the Drainage Pond (compared to infiltration) and as exceedances noted at one pond(s) were not noted at the other pond(s), the water quality at Davidson Pond and Rose's Pond does not appear to be adversely impacted by water that may be infiltrating and migrating from the Drainage Pond.

The City of Kelowna should confirm that the quality of the water pumped from the Drainage Pond to the CoV's Mackay Reservoir is acceptable, particularly with respect to ammonia and orthophosphate concentrations.

9.0 RECOMMENDATIONS FOR 2018

As per Section 4.2. *Surface Water Monitoring* of discharge Permit 108537, the City is required to continue to implement a surface water monitoring program at the Site, in accordance with recommendations from a Qualified Professional.

Golder proposes monthly monitoring at the Drainage Pond and at the neighbouring Davidson Pond and Rose's Pond between April and November (or, when the pond is not frozen) in 2018, as follows:

- Collecting and analyzing samples for potential septage contaminants including:
 - Phosphorous (ortho-phosphate), chloride, ammonia, nitrate, nitrite, and total kjeldahl nitrogen.
 - BOD and COD.
 - Metals (total and dissolved).
 - PH, total dissolved solids (TDS), total suspended solids (TSS) and hardness.
- The City of Kelowna should request that the laboratory use lower analytical detection limits for beryllium (i.e., <0.0001 mg/L), lithium (i.e., <0.008 mg/L), and phosphorus (i.e., <0.005 mg/L) for reasonable comparison of results with the applicable guidelines.</p>
- Compile an annual report to the City of Kelowna with comparison of surface water sample results to applicable criteria.
- Continue to obtain evaporation pan readings and staff gauge measurement at the Drainage Pond. In order to have a meaningful interpretation of pond evaporation versus infiltration, it is recommended that these readings/measurements be taken over three long-term (i.e., 48-hour) periods in 2018; once in the spring (i.e., May or June), once in the summer (i.e., July or August) and again in the fall (i.e., September or October). The spring and fall periods will be important for assessing potentially smaller differences between evaporation and infiltration, as lower evaporation rates are expected during spring/fall compared to summer. Consideration should be given to collecting this evaporation pan and water level data with pressure transducers to capture the small level changes.
- The field pH and temperature of the water samples should be measured with a properly-calibrated meter by CoK personnel during the collection of pond water samples, so that the suitability of the ammonia guidelines can be assessed. Often laboratory-measured pH can be slightly different than field pH, due to geochemical changes in the sample bottle during transport. The field pH and temperature will be used in the assessment of pond water quality and in determining the appropriate criteria to use in the comparison of analytical ammonia results.

- Implement a QA/QC program to minimize errors in the field and obtain accurate monitoring results. This may include: i) collection of a field duplicate sample from a select pond during each sampling event; ii) use of dedicated monitoring and sampling sheets during the collection of water samples (refer to next bullet); iii) review of analytical results soon after receipt; and iv) contacting analytical laboratory should anomalous analytical results be identified to determine whether anomalous results are laboratory-related.
- Dedicated monitoring and sampling sheets should be completed during sampling events at each location and reviewed in conjunction with the analytical water quality data. Field notes on the sheets should include: sample location, date and time of sample collection, weather, surface water conditions, approximate pond levels at the time of sample collection, the approximate depth that each sample is collected (from top of water surface), equipment used for sampling, field (pH and temperature) parameter measurements, apparent sample turbidity, type and size of bottles used, and whether the sample was preserved (including preservative type) and/or field filtered.
- Samples should be taken such that minimal to no suspended particles or disturbed sediment are collected in the sampling bottles, and that no surface matter (i.e., algae) is inadvertently collected.

10.0 LIMITATIONS AND USE OF REPORT

This report was prepared for the exclusive use of the City of Kelowna and MoE. The findings, interpretations and conclusions are based solely on the Site conditions during the sampling events. The data presented in this report represent the leachate quality conditions at the sampling locations tested. Leachate conditions may vary with location, depth, sampling, methodology, analytical techniques and other factors.

Except where specifically stated to the contrary, the information contained in this report (including reports, information and data) was provided to Golder by others and has not been independently verified or otherwise examined by Golder to determine its accuracy of completeness. Golder has relied in good faith on this information and does not accept responsibility of any deficiency, misstatements or inaccuracies contained in the report as a result of omissions, misinterpretation and/or fraudulent acts of the persons interviewed or contacted, or errors or omissions in the reviewed documentation.

Golder makes no warranty, expressed or implied, and assumes no liability with respect to the use of the information contained in this report at the subject site, or at any other site, for other than its intended purpose.

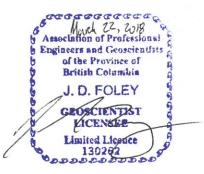
Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

The services performed as described in this report were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits and financial and physical constraints applicable to the services.

If new information is discovered during future work, including excavations, borings or other studies, Golder should be requested to re-evaluate the conclusions presented in this report and to provide amendments as required.

11.0 CLOSURE

We trust that this report provides the information you require at this time. Should you have any questions or require additional information, please do not hesitate to contact the undersigned.


Yours very truly,

Golder Associates Ltd.

Pana Athanasopoulos, MSc, PGeo Senior Hydrogeologist

HH/PA/JF/cmc

Jacqueline Foley, MSc, GeoL Associate, Senior Hydrogeologist

Golder and the G logo are trademarks of Golder Associates Corporation

\lgolder.gds\gal\burnaby\final\2015\3 proj\1542527 cok_biosolids facilities_vernon\1542527-006-r-rev1\1542527-006-r-rev1-cok biosolids report 22mar_18.docx

Location													Drain	age Pond															
ALS Laboratory ID	Aquatic Life		Drinking	L	1440745-1	L1462088-1	L1502217-1	L1515479-1	L1532630-1	L1547862-3	L1625288-1	L1645255-1	L1656492-1	L1669705-1	L1684336-1	L1698669-1	L1742616-1	L1752610-1	L1763882-1	L1777367-1	L1794599-1	L1811981-1	L1832582-1	L1924064-1	L1946645-1	L1965494-1	L1984896-1	L1994913-1 L	2016326-1
Date	CSR-AW ⁽¹⁾ (freshwater)	Notes	Water	Notes	7-Apr-14	28-May-14	13-Aug-14	9-Sep-14	14-Oct-14	17-Nov-14	10-Jun-15	20-Jul-15	11-Aug-15	7-Sep-15	6-Oct-15	4-Nov-15	8-Mar-16		3-May-16	1-Jun-16	5-Jul-16	10-Aug-16						20-Sep-17	
General Parameters																													
Temperature (field)					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	14.0	20.0	24.0	19.0	13.0	3.0
pH (field)					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7.6	8.0	8.0	8.0	8.1	8.7
pH (laboratory)					9.13	8.15	9.21	8.25	8.50	8.11	9.44	8.12	8.67	8.22	8.19	7.57	7.82	8.19	9.11	8.17	8.03	8.19	8.24	8.00	8.23	8.20	8.20	8.19	8.68
conductivity (laboratory)					1460	949	922	977	928	918	883	1250	944	847	987	769	1670	1710	1050	992	919	961	962	899	1590	1070	913	1020	784
total suspended solids (TSS)					43.9	4.6	46.9	9.2	35.7	7.4	37.8	31.0	27.6	34.0	16.0	52.4	21.5	32.1	22.4	7.5	24.8	5.0	<3.0	3.6	19.2	4.9	9.1	11.6	31.3
biochemical oxygen demand (5-da	y BOD)				25.9	3.8	27.7	6.0	13.5	<2.0	13.1	41.1	13.2	13.1	6.1	15.5	12.8	13.6	7.3	3.7	10.8	<2.0	6.2	<2.0	13.4	<2.0	3.9	3.0	15.0
chemical oxygen demand					118	59	155	92	93	57	109	430	92	88	102	195	158	86	60	37	102	55	75	28	261	61	49	121	117
hardness as CaCO3					576	247	233	246	242	217	239	260	232	199	227	157	575	592	305	247	225	234	222	217	484	279	226	254	107
Inorganics																									-	-			
ammonia (total; as N)	1.31 - 18.4	pH/T			1.97*	2.06	0.0990	5.76*	2.79*	1.35	0.0265	19.7*	0.192	5.13*	3.94*	8.68	13.9*	4.98*	0.0232	1.55	1.84	0.965	2.33	0.915	10.6	3.29	1.38	6.55	3.99
nitrate (as N)	400		10		1.35	0.540	0.068	0.118	0.997	2.75	<0.010	<0.025	0.568	0.172	0.090	0.222	6.84	5.82	0.029	0.521	0.408	0.533	0.336	1.21	1.72	0.356	0.314	0.150	1.04
nitrite (as N)	0.2 - 2	CI	1		0.127	0.032	0.034	0.094	0.085	0.077	<0.0020	<0.0050	0.226	0.109	0.0160	0.678	0.513	0.229	0.0886	0.0606	0.159	0.127	0.211	0.0156	0.287	0.106	0.0230	0.106	0.104
total nitrogen chloride	1500		250		8.76 105	4.31 98.7	7.02 104	8.56 102	7.43 97.2	5.54 97.4	4.68 96	36.6 117	5.02 102	9.70 85.6	7.75 102	17.5 64.1	25.1 112	15.6 129	2.98 105	3.66 98.7	3.38 102	3.26 99.2	4.71 99.4	3.26 97.6	25.5 132	5.63 105	3.17 104	12.0 104	10.3 73.8
ortho-phosphate (dissolved; as P)	1300		230		0.455	1.42	1.84	2.02	1.02	0.683	0.450	4.92	1.03	2.68	1.60	3.99	2.98	1.19	0.464	0.968	2.01	99.2 1.21	99.4 1.36	0.647	1.65	2.05	0.929	1.69	2.51
Total Kjeldahl Nitrogen					-	-	-	-	-	-	-	-	-	-	-	-	-	9.06	2.39	3.08	2.81	2.77	4.16	2.03	23.5	5.17	2.83	11.7	9.20
Microbiological Analyses																					-		-			-			
total coliforms (mpn/100mL)					236	3650	10500	242000	38700	5790	12000	92100	1180	>241960	41100	>241960	37200	1780	100	>24196	64900	>241960	1660	980	90000	24200	>24196	3260	24200
Escherichia coli (mpn/100mL)					1	107	4	14100	980	62	7	13000	12	19900	2420	19900	2000	30	<10	70	411	130000	<10	23	<10000	120	480	70	290
Total Metals																													
aluminum			9.5		0.074	0.065	0.038	0.069	0.130	0.021	0.068	0.198	0.066	0.258	0.166	0.705	0.225	0.182	0.066	0.116	0.080	0.088	0.116	0.0282	0.215	0.047	0.108	0.026	0.069
antimony	0.09		0.006		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.0007	<0.00050	<0.00050	<0.00050	<0.00050
arsenic	0.05		0.01		0.0019	0.0012	0.0016	0.0017	0.0014	<0.0010	0.0013	0.0050	0.0013	0.0022	0.0016	0.0029	0.0033	0.0019	0.0013	0.0011	0.0023	0.0011	0.00136	0.00086	0.00447	0.0015	0.00130	0.0020	0.0024
barium	10		1		0.028	0.022	0.025	0.030	0.023	<0.020	0.025	0.036	0.023	0.034	0.030	0.050	0.048	0.039	0.027	0.029	0.027	0.033	0.034	0.029	0.056	0.035	0.035	0.030	0.023
beryllium	0.0015		0.008		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0010	< 0.0010	<0.0010	<0.00010	<0.00010	<0.0050	<0.0050
bismuth	40		E		<0.20 0.14	<0.20 0.16	<0.20 0.17	- 0.20	- 0.17	- 0.17	- 0.17	<0.20 0.21	- 0.16	- 0.16	<0.20 0.17	<0.20 0.14	<0.20 0.13	<0.20 0.14	<0.20	<0.20 0.16	<0.20 0.17	<0.20 0.14	<0.20 0.16	<0.20 0.15	<0.20 0.17	<0.20 0.14	<0.20 0.15	<0.20 0.16	<0.20 0.16
boron cadmium	12 0.0005 - > 0.004	ц	5 0.005		0.14 <0.000050	<0.000050	0.00087	<0.000050	<0.000050	<0.000050	<0.000050	0.21	<0.000050	0.00095	0.17	0.14	0.13	0.14	0.15 <0.000050	<0.000050	<0.000050	<0.000050	0.16	0.15	0.00285	0.14 <0.000050	0.15	<0.000050	0.000063
calcium	0.0003 - > 0.004		0.005		117	58.1	55.5	64.3	55.3	50.9	57.0	62.6	55.0	48.9	54.7	41.5	123	122	65.5	58.9	54.4	54.5	53.1	56.2	105	72.1	55.6	57.7	41.1
chromium	0.010 ^{VI} . 0.090 ^{III}	V	0.05		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00098	<0.00050	0.00066	<0.00050	0.00168	0.00104	0.00090	<0.00050	<0.00050	<0.00050	0.00177	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00050	0.00063
cobalt	0.04		0.001		0.00064	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	0.00081	<0.00050	< 0.00050	<0.00050	0.00074	0.00076	0.00076	<0.00050	<0.00050	<0.00050	<0.00050	0.00042	0.00030	0.00081	<0.00050	0.00033	<0.00050	<0.00050
copper	0.020 - 0.090	н	1.5		0.0056	0.0061	0.0090	0.0066	0.0051	0.0071	0.0045	0.0531	0.0051	0.0148	0.0092	0.0373	0.0234	0.0118	0.0039	0.0036	0.0070	0.0047	0.0117	0.0032	0.0544	0.0043	0.0039	0.0062	0.0130
iron			6.5		0.205	0.154	0.094	0.162	0.238	0.057	0.142	0.384	0.114	0.272	0.238	0.893	0.472	0.409	0.130	0.225	0.179	0.141	0.206	0.061	0.484	0.205	0.170	0.108	0.237
lead	0.040 - 0.160	н	0.01		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0034	<0.0010	0.0013	<0.0010	0.0031	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00050	<0.00050	0.00123	<0.0010	<0.00050	<0.0010	<0.0010
lithium			0.008		<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.0107	0.0102	0.0178	0.0131	0.0105	<0.050	<0.050
magnesium					64.8	25.2	23.2	27.0	23.8	21.9	23.6	25.2	22.1	19.8	22.3	16.1	66.1	68.6	30.4	23.8	22.1	21.2	22.0	23.3	54.8	28.4	23.1	23.6	18.4
manganese			1.5		0.221	0.143	0.087	0.159	0.122	<0.010	0.123	0.193	0.104	0.140	0.130	0.276	0.265	0.208	0.109	0.158	0.124	0.126	0.147	0.0980	0.272	0.183	0.117	0.095	0.137
mercury	0.00025		0.001		< 0.00020	<0.00020	< 0.00020	< 0.00020	<0.00020	<0.00020	< 0.00020	<0.00020	<0.00020	< 0.00020	<0.00020	<0.00020	< 0.00020	< 0.00020	<0.00020	< 0.00020	<0.00020	< 0.00020	<0.0000050	< 0.0000050		< 0.0000050	0.0000135	<0.00020	< 0.00020
molybdenum nickel	0.250 - 1.5	ц	0.25		0.0057 <0.0050	0.0066 <0.0050	0.0075 <0.0050	0.0065 <0.0050	0.0048 <0.0050	0.0043 <0.0050	0.0057 <0.0050	0.0069 <0.0050	0.0053 <0.0050	0.0057 <0.0050	0.0060 <0.0050	0.0042 <0.0050	0.0067 <0.0050	0.0056 <0.0050	0.0052 <0.0050	0.0045 <0.0050	0.0055 <0.0050	0.0045 <0.0050	0.0044 <0.0025	0.0043 0.0017	0.0119 0.0044	0.0044 <0.0050	0.0043 0.0019	0.0042 <0.0050	0.0039 <0.0050
phosphorus	0.230 - 1.3		0.00		1.35	1.67	2 52	<0.0050	<0.0050	<0.0050	<0.0050	6.10	<0.0050	<0.0050	1.90	5.73	3.85	1.88	0.93	1.20	2.99	1.53	1.66	0.85	2.59	2.31	1.22	1.84	3.33
potassium					24.4	21.0	28.4	-	-	-	-	72.7	-	-	24.7	27.2	33.3	26.7	19.9	22.0	25.5	19.9	22.1	19.5	44.5	22.6	20.8	28.9	25.2
selenium	0.02		0.01		0.0025	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0011	<0.0010	<0.0010	<0.0010	<0.0010	0.0042	0.0035	<0.0010	<0.0010	<0.0010	<0.0010	0.000534	0.000512	0.00187	<0.0010	0.000622	<0.0010	<0.0010
silicon					5.41	3.61	2.84	-	-	-	-	4.47	-	-	4.28	4.16	5.98	5.81	3.56	3.54	3.75	3.46	3.96	2.96	4.76	4.11	3.68	3.92	0.49
silver	0.0005 - 0.015	н	0.02		0.000051	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000279	<0.000050	0.000111	0.000098	0.000215	0.000093	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000063	<0.000020	0.000227	<0.000050	0.000036		<0.000050
sodium			200		125	104	105	116	95.4	101	93.1	106	98.2	90.0	93.9	73.3	131	146	110	103	99.8	101	108	103	135	103	103	109	81.4
strontium		Τ	2.5	ſ	1.18	0.583	0.535	-	-	-	-	0.566	-	-	0.545	0.359	1.16	1.23	0.642	0.566	0.549	0.527	0.558	0.541	1.10	0.647	0.551	0.569	0.376
thallium	0.003				<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.000010	<0.00020	<0.00020
titanium	1				<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.010	< 0.010	<0.010	<0.010	< 0.010	<0.050	<0.050
tin	0.005		2.5		< 0.030	< 0.030	<0.030	-	-	0.00400	-	< 0.030	-	-	<0.030	< 0.030	< 0.030	< 0.030	<0.030	< 0.030	< 0.030	< 0.030	< 0.00050	< 0.00050	0.00080	< 0.00050	< 0.00050	<0.030	< 0.030
uranium	0.085		0.02		0.00444	0.00197	0.00209	0.00180	0.00178	0.00100	0.00223	0.00250	0.00202	0.00214	0.00241	0.00116	0.00615	0.00592	0.00265	0.00204	0.00224	0.00210	0.00193	0.00241	0.00984	0.00306	0.00275	0.00262	0.00134
vanadium zinc	0.075 - > 2.4	ц	2		<0.030 0.0267	<0.030 0.0266	<0.030 0.0282	<0.030 0.0180	<0.030 0.0238	<0.030 0.0385	<0.030 0.0196	<0.030 0.0866	<0.030 0.0198	<0.030 0.0310	<0.030 0.0188	<0.030 0.0822	<0.030 0.0715	<0.030 0.0539	<0.030 0.0240	<0.030 0.0229	<0.030 0.0191	<0.030 0.0237	0.00126 0.0284	0.00088 0.0270	0.00193 0.0574	0.00071 0.0130	0.00136 0.0226	<0.030 0.0177	<0.030 0.0418
ZING	0.075 -> 2.4		3		0.0207	0.0200	0.0282	0.0160	0.0236	0.0365	0.0190	00000.0	0.0190	0.0310	0.0166	0.0622	0.0715	0.0539	0.0240	0.0229	0.0191	0.0237	0.0284	0.0270	0.0574	0.0130	0.0220	0.0177	0.0410

Location													Drain	nage Pond															
ALS Laboratory ID	Aquatic Life		Drinking		L1440745-1	L1462088-1	L1502217-1	L1515479-1	L1532630-1	L1547862-3	L1625288-1	L1645255-1	L1656492-1	L1669705-1	L1684336-1	L1698669-1	L1742616-1	L1752610-1	L1763882-1	L1777367-1	L1794599-1	L1811981-1	L1832582-1	L1924064-1	L1946645-1	L1965494-1	L1984896-1	L1994913-1	L2016326-
Date	CSR-AW ⁽¹⁾		Water		7-Apr-14	28-May-14	13-Aug-14	9-Sep-14	14-Oct-14	17-Nov-14	10-Jun-15	20-Jul-15	11-Aug-15	7-Sep-15	6-Oct-15	4-Nov-15	8-Mar-16	5-Apr-16	3-May-16	1-Jun-16	5-Jul-16	10-Aug-16	21-Sep-16	9-May-17	21-Jun-17	26-Jul-17	31-Aug-17	20-Sep-17	31-Oct-17
	(freshwater)	Notes	CSR-DW ⁽¹⁾	Notes																									
Dissolved Metals																													
aluminum			9.5		0.036	0.013	0.014	0.017	0.021	0.072	0.017	0.067	0.018	0.063	0.033	0.104	0.045	0.025	0.015	0.013	0.030	0.010	0.0185	0.0056	0.0818	0.020	0.0136	0.031	<0.010
antimony	0.09		0.006		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00054	<0.00050	<0.00050	<0.00050	<0.00050
arsenic	0.05		0.01		0.0016	0.0012	0.0015	0.0016	0.0013	<0.0010	0.0011	0.0046	0.0012	0.0020	0.0016	0.0026	0.0031	0.0018	0.0012	0.0010	0.0021	0.0012	0.00114	0.00081	0.00449	0.0015	0.00120	0.0021	<0.0010
parium	10		1		<0.020	<0.020	<0.020	0.023	<0.020	<0.020	<0.020	0.028	0.020	<0.020	0.024	<0.020	0.032	0.032	0.026	0.026	0.020	0.033	0.030	0.027	0.043	0.036	0.030	0.031	0.023
peryllium	0.0015		0.008		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0010	<0.0010	<0.0010	<0.00010	<0.00010	<0.0050	<0.0050
pismuth	40		-	1	<0.20	<0.20	<0.20	-	-	-	-	<0.20	-	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20	< 0.20	<0.20	<0.20	<0.20	<0.20	<0.20
cadmium	12 0.0005 - > 0.004	ц	5 0.005		0.14 <0.000050	0.16 <0.000050	0.17 <0.000050	0.17 <0.000050	0.18 <0.000050	0.16 <0.000050	0.17 <0.000050	0.20 0.000154	0.16 <0.000050	0.16 <0.000050	0.17 <0.000050	0.13 0.000126	0.13 0.000088	0.14 <0.000050	0.15 <0.000050	0.16 <0.000050	0.16 <0.000050	0.16 <0.000050	0.17 0.0000229	0.13 0.0000102	0.16 0.000159	0.15 <0.000050	0.14 0.0000150	0.18 0.000059	<0.10 <0.000050
calcium	0.0003 - > 0.004	п	0.005		121	<0.000050 57.5	<0.000050 54.7	<0.000030 58.3	<0.000050 56.6	<0.000050 50.0	<0.000050	62.4	<0.000050 55.7	<0.000050 47.5	<0.000030 54.9	37.9	120	123	<0.000050 70.2	<0.000050 59.7	<0.000050 53.8	<0.000050 57.2	53.9	51.0	99.5	<0.000050	53.9	61.3	28.3
chromium	0.010 ^{VI} . 0.090 ^{III}	V	0.05	1	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00064	<0.00050	0.00066	<0.00050	<0.00050	<0.00050	0.00064	0.00058	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00050	<0.00050
cobalt	0.04	v	0.001		0.00055	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00064	<0.00050	<0.00050	<0.00050	<0.00050	0.00067	0.00069	<0.00050	<0.00050	<0.00050	<0.00050	0.00032	<0.00030	0.00059	<0.00050	<0.00030	<0.00050	<0.00050
copper	0.020 - 0.090	н	1.5		0.0025	0.0036	0.0059	0.0037	0.0025	0.0096	0.0030	0.0219	0.0030	0.0065	0.0045	0.0174	0.00007	0.0057	0.0024	0.0021	0.0048	0.0031	0.0036	0.0025	0.0142	0.0020	0.0024	0.0085	0.0025
iron			6.5		< 0.030	0.056	< 0.030	0.046	< 0.030	0.174	< 0.030	0.210	< 0.030	0.034	0.041	0.177	0.162	0.064	<0.030	0.053	0.072	0.037	0.043	< 0.030	0.144	0.104	< 0.030	0.112	0.121
lead	0.040 - 0.160	н	0.01		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0015	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	< 0.00050	<0.00050	<0.00050	<0.0010	<0.00050	<0.0010	<0.0010
lithium			0.008		<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.0095	0.0098	0.0172	0.0120	0.0101	<0.050	<0.050
magnesium			-		66.4	25.1	23.3	24.4	24.4	21.7	23.6	25.2	22.4	19.4	21.9	15.2	66.8	69.0	31.4	23.9	22.1	22.1	21.2	21.8	57.2	28.3	22.2	24.6	8.79
manganese			1.5		0.026	0.062	0.010	<0.010	<0.010	0.074	<0.010	0.023	<0.010	<0.010	<0.010	0.128	0.144	0.102	<0.010	0.139	0.050	0.102	0.0596	0.0835	0.211	0.171	0.0413	<0.010	<0.010
mercury	0.00025		0.001		<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.000025	< 0.0000050		<0.000050	<0.0000050		<0.00020
molybdenum	10		0.25		0.0060	0.0065	0.0072	0.0065	0.0049	0.0050	0.0057	0.0063	0.0053	0.0056	0.0057	0.0041	0.0065	0.0056	0.0049	0.0041	0.0052	0.0042	0.0040	0.0041	0.0055	0.0042	0.0040	0.0041	< 0.0010
nickel	0.250 - 1.5	н	0.08	1	<0.0050 0.81	<0.0050 1.51	<0.0050 1.42	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050 5.32	<0.0050	<0.0050	<0.0050 1.74	<0.0050 4.37	<0.0050 3.31	<0.0050 1.34	<0.0050 0.64	<0.0050 1.15	<0.0050 2.58	<0.0050 1.48	0.0016 1.49	0.0015 0.76	0.0035 2.09	<0.0050 2.45	0.0017 1.08	<0.0050 1.94	<0.0050 3.44
potassium					24.6	20.9	28.6					76.4	-	-	24.3	25.6	31.3	24.9	21.1	21.7	25.4	20.5	20.3	18.3	44.3	25.4	19.7	30.3	2.2
selenium	0.02		0.01	1	0.0020	<0.0010	< 0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0039	0.0034	<0.0010	<0.0010	<0.0010	<0.0010	0.000507	0.000579	0.00137	<0.0010	0.000572	<0.0010	<0.0010
silicon				4	5.44	3.43	2.87	-	-	-	-	3.63	-	-	4.08	3.30	5.50	5.73	3.61	3.35	3.62	3.45	3.71	2.71	4.56	4.17	3.33	3.91	0.273
silver	0.0005 - 0.015	н	0.02	1	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	< 0.000050	0.000071	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000020	< 0.000020	<0.000020	<0.000050	<0.000020	<0.000050	<0.000050
sodium			200		126	103	107	106	98.2	99.2	93.9	110	100	86.9	94.8	71.2	125	148	118	103	99.5	105	101	96.0	136	108	97.3	108	7.3
strontium			2.5		1.16	0.578	0.522	-	-	-	-	0.557	-	-	0.546	0.316	1.10	1.27	0.682	0.568	0.542	0.549	0.539	0.515	1.09	0.639	0.544	0.572	0.133
thallium	0.003				<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	0.000014	<0.00020	<0.00020	<0.000010	<0.000010	<0.000010	<0.000010		<0.000010	<0.000010	<0.000010	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.000010	<0.000010
tin			2.5		<0.030	<0.030	<0.030	-	-	-	-	<0.030	-	-	<0.030	<0.030	< 0.030	<0.030	<0.030	<0.030	<0.030	< 0.030	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.030	<0.030
titanium	1		0.00	1	< 0.050	<0.050	<0.050	< 0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.010	< 0.010	<0.010	< 0.010	<0.010	< 0.050	< 0.050
uranium vanadium	3		0.02		0.00478 <0.030	0.00195 <0.030	0.00197	0.00182 <0.030	0.00179	- 0.00122	0.00217	0.00246 <0.030	0.00208 <0.030	0.00198 <0.030	0.00233 <0.030	0.00079 <0.030	0.00602	0.00606	0.00185 <0.030	0.00173 <0.030	0.00210 <0.030	0.00194	0.00173 0.00097	0.00202	0.00620 0.00161	0.00275 0.00062	0.00246	0.00254	<0.00020 <0.030
zinc	0.075 - > 2.4	н	3	1	0.0118	<0.030 0.0254	<0.030 0.0146	0.0134	<0.030 0.0169	< 0.00122	<0.030 0.0072	<0.030 0.0508	0.0144	0.0137	0.0119	0.0448	<0.030 0.0549	<0.030 0.0423	<0.030 0.0194	0.0248	0.0181	<0.030 0.0238	0.00097	0.00077 0.0242	0.00181	0.00082	0.00096 0.0145	<0.030 0.0206	0.0233
Notes:	0.010-22.4		, ,		0.0110	0.0204	0.0170	0.0104	0.0103	NO.000	0.0012	0.0000	0.0177	0.0107	0.0113	0.0770	0.0049	0.0723	0.0134	0.0240	5.0101	0.0200	0.0212	0.0272	0.0004	0.0100	0.0170	0.0200	0.0200
All concentrations in milligrams per li	itre (mg/L), unless o	otherwise	noted.																										
(1) Standards from the Contaminated				ember 20	017.																								
Land Use abbreviations: AW (Aquati H = standard is Hardness dependent				idard is c	hloride depen	dent; V = stand	lard is valence	dependent, VI	=chromium VI	and III=chrom	ium III; T = star	idard varies wit	th temperature ((10 deg C assu	med for ammor	nia criteria).													
in 19.7 *Exceedance based on laboratory ph	ndicates parameter	concenti	ration exceeds	applicabl	e CSR AW or	DW standards																							

Location					1										Da	avidson Pond											
ALS Laboratory ID	Aquatic Life	Drinking	BC Water Quality		1 1502217-2	L1515479-2	11532630-2	1 1547862-2	1 1625288-2	1 1645255-2	1 1656/02-2	L1669705-2	1 1684336-2	1 1608660-2		L1752610-2		1 1777367-2	1 170/500-2	1 1811081-2	1 1832582-2	1 1024064-3	2 1 10/66/5-2	1 1065/0/-2	1 108/806-2	L1994913-2	12016326-2
Date	CSR-AW (freshwater)	Water Votes Votes Votes	Aquatic Life (freshwater)	Notes		9-Sep-14	14-Oct-14				11-Aug-15			4-Nov-15		5-Apr-16				10-Aug-16						20-Sep-17	
Parameters			,																								
Temperature (field)					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	16	21	23.5	24	15	5
pH (field)			<u>6.5 - 9.0</u>		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8.8	<u>9.1</u>	8.8	<u>9.3</u>	9.2	7.8
pH (laboratory)			<u>6.5 - 9.0</u>		8.68	8.77	8.49	8.31	8.70	8.67	8.71	8.64	8.46	8.35	8.75	8.73	8.81	8.66	8.77	8.82	8.62	8.76	8.89	8.74	8.96	8.78	8.36
conductivity (laboratory)					3140	3110	3160	3210	2870	3250	3350	3230	3500	3480	2480	2980	3100	3250	3140 6.0	3470	3550 <3.0	2500	2720	3010	3150	3290	3510 16.7
total suspended solids (TSS)					<3.0	6.6 <2.0	8.9 <2.0	19.0 <2.0	5.5	4.6 2.9	3.0	10.2 <2.0	23.3 4.9	16.3 4.1	12.8 5.7	<3.0	3.4 <2.0	<3.0 <2.0	6.0 <2.0	3.4 <2.0	<3.0 2.1	22.8	24.2	6.1	4.1 <2.0	6.6 <2.0	2.9
biochemical oxygen demand (5-day BOD) chemical oxygen demand (COD)					<2.0	<2.0 63	<2.0 70	<2.0 90	<2.0 64	2.9	<2.0 63	<2.0 58	4.9	63	5.7	<2.0	<2.0 56	< <u>2.0</u> 61	<2.0 58	< <u>2.0</u> 101	75	<2.0 49	<2.0	<2.0	<2.0 71	<2.0 72	2.9
hardness as CaCO3					532	526	531	90 545	539	527	525	58 544	79 549	63 564	461	533	566 566	561	58 540	563	75 565	49 482	514	560	556	535	139
Inorganics																											
ammonia (total; as N)	1.31 - 18.4 pl	H/T	<u>0.131 - 1.84</u> ⁺	pH/T	0.0176	0.0235	0.203	<u>0.957*</u>	0.0142	0.0149	0.0114	0.119	0.166	<u>0.583*</u>	0.0111	0.0283	0.0238	0.0208	0.0143	0.0455	0.0278	0.0768	0.0161	0.0160	0.0198	0.0140	0.645
nitrate (as N)	400	10	<u>3.0</u> ⁺		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.79	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
nitrite (as N)	0.2 - 2	CI 1	0.02 - 0.20 ⁺	CI	<0.020	<0.020	<0.020	0.050	<0.020	<0.020	<0.020	<0.020	<0.020	0.030	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.13
total nitrogen					1.60	467	1.82	2.79	1.60	1.69	1.71	1.90	2.47	2.62	1.69	1.70	1.55	2.49	1.72	1.81	1.72	1.52	1.75	1.76	2.24	1.88	2.42
chloride	1500	250	<u>150⁺, 600*</u>		310	311	327	319	303	329	326	322	311	340	254	296	304	312	307	336	347	268	285	309	348	340	328
ortho-phosphate (dissolved; as P) Total Kjeldahl Nitrogen			0.005 to 0.015	see note 1	0.011	0.0022	0.0085	0.0883	<0.0010	<0.0010	<0.0010	<0.0010	0.0027	0.0011	<0.0010	<0.0010 1.66	<0.0010 1.54	<0.0010 2.49	<0.0010 1.72	0.0010 1.73	<0.0010 1.72	0.0087 1.52	<0.0010 1.75	<0.0010 1.76	0.0010 2.24	<0.0010 1.88	0.0363 2.42
Microbiological Analyses																1.00		2.10			=						
total coliforms (mpn/100mL)					173000	13000	2910	411	11200	92100	24200	1730	1530	248	88	71	365	387	>2419.6	>241960	488000	1000	4610	24200	9800	2420	37
Escherichia coli (mpn/100mL)					261	61	17	2	3	17	3	6	22	12	48	6	1	<1	<1	21	2720	1000	5	6	<10	1	9
Total Metals																											
aluminum		9.5	See Disso	olved Metals	<0.010	0.166	0.038	0.053	0.027	<0.010	<0.010	0.012	0.122	0.034	0.056	0.0107	<0.0060	0.0063	<0.0060	0.0435	<0.015	0.0256	0.174	0.0122	0.0174	<0.0060	0.0143
antimony	0.09	0.006	0.009	W	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00052	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
arsenic	0.05	0.01	0.005		0.0031	0.0034	0.0035	0.0032	0.0032	0.0028	0.0028	0.0036	0.0046	0.0038	0.0026	0.00312	0.00298	0.00317	0.00358	0.00347	0.00358	0.00273	0.00314	0.00386	0.00342	0.00321	0.00408
barium	10	1	<u>1</u>	W	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
beryllium	0.0015	0.008	0.00013	W	<0.0050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00020	<0.00010	<0.00020	<0.00020
bismuth					<0.20	-	-	-	-	<0.20	-	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
boron	12	5	<u>1.2</u>		<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
cadmium	0.0005 - > 0.004	H 0.005	See Disso	olved Metals	<0.00010	<0.00010	<0.00010	<0.00010	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050		<0.000010	<0.000010	<0.000010		<0.000025	<0.000010		<0.000010	0.0000052		<0.000010
calcium					59.9	62.2	61.7	61.0	64.6	58.2	57.0	58.7	61.5	60.5	61.7	67.5	66.4	64.1	59.9	54.9	52.4	64.5	58.1	54.9	50.2	47.0	59.3
chromium	0.010 ^{VI} , 0.090 ^{III}	V 0.05	0.001 ^{VI} , 0.0089 ^{III}	W	<0.0010	<0.0010	<0.0010	<0.0010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0011	<0.0010	<0.0010	<0.0010	<0.0010
cobalt	0.04	0.001	0.004		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00050	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
copper	0.020 - 0.090	H 1.5	calculation	Н	<0.0010	0.0013	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0025	0.0017	<0.0010	<0.0010	0.0012	0.0010	<0.0010	<0.0010	<0.0025	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
iron		6.5	<u>1*</u>		<0.030	0.083	0.069	0.111	0.043	<0.030	<0.030	<0.030	0.153	0.053	0.094	<0.030	<0.030	<0.030	<0.030	0.054	<0.030	0.043	0.233	0.033	0.041	<0.030	0.043
lead	0.040 - 0.160	H 0.01	calculation	Н	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
lithium		0.008			<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.0392	0.0402	0.0423	0.0474	0.0495	0.0501	0.0323	0.0348	0.0485	0.0447	0.0427	0.0472
magnesium					91.6	93.9	99.1	97.2	88.5	88.3	96.7	98.7	101	98.9	75.9	91.1	89.8	93.1	97.7	104	110	82.6	90.1	108	110	97.2	119
manganese		1.5	calculation	Н	0.029	0.032	0.125	0.103	0.032	0.022	0.012	0.129	0.161	0.158	0.111	0.0340	0.0405	0.0415	0.0110	0.0149	0.0841	0.0358	0.0326	0.0245	0.0222	0.0306	0.157
mercury	0.00025	0.001			<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.000050	<0.0000050			<0.000050		<0.000050		<0.0000050			< 0.0000050
molybdenum	10	0.25	<u><1</u>		< 0.0010	<0.0010	0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0013	<0.0010	<0.0010	0.0011	0.0017	<0.0010	<0.0010	0.0011	<0.0010	0.0011	0.0012	<0.0010	<0.0010	<0.0010	<0.0010
nickel	0.250 - 1.5	H 0.08		H ≥ 180 mg/L CaCO3; W	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0016	0.0019	0.0014	0.0017	0.0021	<0.0025	0.0014	0.0020	0.0018	0.0018	0.0017	0.0018
phosphorus			0.005 to 0.015	see note 1	<0.30	-	-	-	-	<0.30	-	-	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
potassium					41.7	-	-	-	-	40.9	-	-	46.6	43.6	32.6	39.2	37.7	40.4	41.1	44.5	46.2	32.5	35.9	44.0	43.2	40.1	44.3
selenium	0.02	0.01	0.002	see note 2	<0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.00020	0.00011	<0.00010	<0.00010	0.00016	<0.00025	0.00013	0.00015	0.00031	0.000116	0.00010	<0.00010
silicon					2.24	-	-	-	-	3.80	-	-	4.69	1.76	1.25	0.461	0.340	1.05	1.46	1.61	1.63	0.76	0.57	1.42	1.11	1.48	2.56
silver	0.0005 - 0.015	H 0.02	<u>0.0015</u>	H > 100 mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050		<0.000020	<0.000020			<0.000050	<0.000020		0.000486			<0.000020
sodium		200			539	540	561	529	446	514	542	567	537	546	397	494	487	481	520	561	596	405	431	567	559	518	566
strontium	0.000	2.5			0.664	-	-	-	-	0.690	-	-	0.797	0.775	0.648	0.773	0.779	0.783	0.832	0.772	0.784	0.775	0.766	0.753	0.734	0.706	0.874
thallium the minute	0.003		<u>0.0008</u>	W	<0.00020	<0.00020	<0.00020	<0.00020	< 0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.0020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	< 0.00020	<0.00020	<0.000020	<0.000010		<0.000020
titanium	1	2.5			< 0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	< 0.010	0.012	< 0.010	<0.010	<0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
un 	0.005	2.5	0.0005	14/	< 0.030	- 0.00415	- 0.00462	- 0.00527	- 0.00564	< 0.030	-	-	< 0.030	< 0.030	< 0.030	< 0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050
uranium	0.085	0.02	<u>0.0085</u>	W	0.00396 <0.030	0.00415 <0.060	<0.00462 <0.030	<0.00527		0.00505	0.00492	0.00498	0.00640	0.00585	0.00516	0.00590	0.00611	0.00540	0.00583	0.00623	0.00481	0.00545	0.00525	0.00493	0.00551	0.00502	0.00548
vanadium	0.075		and and all	11.11.5.00	<0.030 <0.0050	<0.060 <0.010	<0.030 <0.0050	<0.030 <0.0050	<0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0025	< 0.0010	0.0011	<0.0010	0.00082	<0.0010	< 0.0010
zinc	0.075 - > 2.4	H <u>3</u>	calculation	H; H > 90 mg/L	NU.0050	NU.010	×0.0050	~0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0060	<0.0060	<0.0060	<0.0050	<0.0060	<0.0060

	Location																	Da	avidson Pond											1
	ALS Laboratory ID	Aquatic Life	1 🗖	Drinking	T T	BC Water Quality		L1502217-2	L1515479-2	L1532630-2	L1547862-2	L1625288-2	2 L1645255-2	L1656492-2	L1669705-2	L1684336-2	L1698669-2	2L1742616-2	L1752610-2	L1763882-2	L1777367-2	L1794599-2	L1811981-2	L1832582-2	L1924064-2	L1946645-2	L1965494-2	L1984896-2	L1994913-2	L2016326-2
	Date	CSR-AW	es	Water	es	Aquatic Life	es	13-Aug-14	9-Sep-14	14-Oct-14	17-Nov-14		20-Jul-15			6-Oct-15				3-May-16			10-Aug-16		9-May-17	21-Jun-17	26-Jul-17	31-Aug-17	20-Sep-17	31-Oct-17
		(freshwater)	Not	CSR-DW	Not	(freshwater)	Not																							
Dissolved Metals		· · · ·				· · · · ·																								
aluminum			ſ	9.5		0.05 ⁺ (dis)	pH >6.5	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	<0.010	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	0.0059	<0.0050	<0.0050
antimony	ſ	0.09		0.006				<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050
arsenic		0.05	- I	0.01				0.0031	0.0031	0.0028	0.0031	0.0032	0.0029	0.0028	0.0032	0.0039	0.0037	0.0024	0.00289	0.00328	0.00333	0.00316	0.00340	0.00338	0.00269	0.00308	0.00339	0.00337	0.00318	< 0.00050
barium		10	- I	1				<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
beryllium		0.0015		0.008				<0.0050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00020	<0.00010	<0.00020	<0.00020
bismuth			_					<0.20	-	-	-	-	<0.20	-	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
boron		12		5				<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
cadmium		0.0005 - > 0.004	н	0.005		calculation (dis)	Н	<0.00010	<0.00010	<0.00010	<0.00010	< 0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	< 0.000050	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	< 0.000010	<0.000010	<0.000010	<0.000050	<0.000010	<0.000010
calcium								60.0	60.5	58.7	60.1	65.9	60.4	55.1	58.2	60.0	60.9	61.0	66.9	70.6	66.5	58.3	54.2	53.6	60.5	55.8	53.6	50.3	52.3	35.5
chromium		0.010 ^{VI} , 0.090 ^{III}	V	0.05				<0.0010	<0.0010	<0.0010	<0.0010	<0.00050		<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
cobalt		0.04		0.001				<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	< 0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
copper		0.020 - 0.090	н	1.5			Н	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0022
iron				6.5		0.35* (dis)		<0.030	<0.060	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	< 0.030	<0.030	<0.030	<0.030	<0.030	<0.030	< 0.030	< 0.030	<0.030	< 0.030	<0.030	<0.030	<0.030
lead		0.040 - 0.160	н	0.01				<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
lithium				0.008				<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.0386	0.0427	0.0444	0.0453	0.0467	0.0434	0.0325	0.0353	0.0487	0.0453	0.0482	<0.0020
magnesium					_			92.8	91.1	93.3	95.9	90.9	91.4	94.1	96.7	97.0	100	75.0	89.0	94.6	95.8	95.8	104	105	80.3	90.9	103	105	98.2	12.3
manganese			_	1.5				<0.010	<0.010	0.094	0.089	<0.010	0.011	<0.010	<0.010	<0.010	<0.010	<0.010	0.00123	0.0343	0.0302	0.00362	0.00863	0.0273	0.0267	0.0137	0.0147	0.0137	0.0077	0.00267
mercury		0.00025		0.001				<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.0000050	<0.0000050		<0.0000050			<0.000050	<0.0000050				
molybdenum		10		0.25				< 0.0010	<0.0010	<0.0010	<0.0010	< 0.0010	<0.0010	<0.0010	<0.0010	0.0012	<0.0010	<0.0010	<0.0010	0.0011	<0.0010	<0.0010	<0.0010	<0.0010	0.0011	0.001	<0.0010	<0.0010	<0.0010	<0.0010
nickel		0.250 - 1.5	н	0.08				<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0017	0.0016	0.0013	0.0016	0.0021	0.0012	0.0014	0.0015	0.0016	0.0016	0.0015	0.0035
phosphorus								< 0.30	-	-	-	-	<0.30	-	-	< 0.30	< 0.30	< 0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	< 0.30	< 0.30	<0.30	<0.30	<0.30	<0.30
potassium	-		_	0.04	-			41.3	-	-	-	-	42.8	-	-	44.3	43.2	31.6	35.9	39.1	40.4	40.1	43.3	43.9	30.4	34.7	43.1	41.0	41.6	<2.0
selenium	L	0.02		0.01				< 0.0020	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	< 0.0010	0.00019	0.00012	0.00012	0.00012	<0.00010	0.00016	0.00012	0.00010	0.00019	0.000122	<0.00010	0.00011
silicon		0.0005 0.045	<u> </u>		-			2.22 <0.000050	- <0.000050	- <0.000050	- <0.000050	- <0.000050	3.93	-	-	4.28	1.40	0.437	0.417	0.261	1.06	1.40	1.50	1.51	0.67	0.23	1.32	1.00	1.49	2.54
silver	L	0.0005 - 0.015	н	0.02	_									<0.000050		<0.000050	<0.000050	<0.000050		0.000025	<0.000020	<0.000020	-		<0.000020	<0.000020	<0.000020		<0.000020	<0.000020
sodium				200				536	524	532	531	449	537	530	561	524	546	392	464	510	488	506	551	560	386	431	543	529	527	10.7
strontium		0.002	┓ᆘ	2.5				0.660 <0.00020	- <0.00020	- <0.00020	- <0.00020	- <0.00020	0.717	-	-	0.775	0.775	0.636	0.730	0.820	0.803	0.808	0.764	0.761	0.752	0.807	0.712	0.728	0.770	0.183
thallium	Ļ	0.003	┛┟	25	-				<0.00020	~0.00020	~0.00020	~0.00020	< 0.000020	<0.00020	<0.00020	< 0.000050	< 0.000020	< 0.000020	<0.00020	<0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	<0.00020	< 0.00020	< 0.00020	<0.00020	<0.00020	< 0.00020
ull titopium	-	1	┓ᆘ	2.5				<0.030 <0.050	- <0.050	- <0.050	- <0.050	- <0.050	< 0.030	-	-	< 0.030	< 0.030	< 0.030	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050
titanium		0.095	_ r	0.02	-			<0.050 0.00374	<0.050	<0.050 0.00427	<0.050 0.00516	<0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.010	0.013	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
uranium	Ļ	0.085		0.02				<0.0374	<0.060	<0.00427	<0.00516	<0.00593	0.00534	0.00499	0.00485	0.00641	0.00572	0.00516	0.00588	0.00627	0.00537	0.00538	0.00553	0.00526	0.00574	0.00552	0.00453	0.00524	0.00541	< 0.00020
vanadium	-	0.075 - 0.4		2	-			<0.0050	<0.000	<0.030	<0.0050	<0.0050	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	<0.0010	<0.0010	< 0.0010	< 0.0010	< 0.0010	<0.0010	< 0.0010	< 0.0010	< 0.0010	0.00059	< 0.0010	< 0.0010
ZINC		0.075 - > 2.4	н	3				~0.0050	~0.010	~0.0050	~0.0050	~0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0134

Notes:

All concentrations in milligrams per litre (mg/L), unless otherwise noted.

Standards from the Contaminated Sites Regulation (CSR), updated 1 November 2017. Land Use abbreviations: AW (Aquatic Life); and DW (Drinking Water).

Standards from the Containinated Sites Regulation (CSR), updated 1 November 2017: Land Use abdreviations: AW (Aduatic Life), and DW (Dinking Water). BCWQG = British Columbia Approved (updated January 2017) and Working (updated June 2017) Water Quality Guidelines. Approved WQG provided, unless otherwise noted (as W: Working WQG). H = standard is Hardness dependent; pH = standard is pH dependent; CI = standard is chloride dependent; V = standard is valence dependent, VI=chromium VI and III=chromium III; T = standard varies with temperature (10 deg C assumed for ammonia criteria). Note 1: the guidelines provided for ortho-phosphate are the BCWQG for total phosphorus (as P), and are applicable for lakes where salmonids are the predominant fish species. Guidelines are for reference only, and may not be applicable to Davidson Pond or Rose's Pond.

the predominant fish species. Guidelines are for reference only, and may not be applicable to Davidson Pond or Rose's Pond. + = long-term average BCWQG AW guideline; * = short-term maximum BCWQG AW guideline. Long-term average BCWQG provided, unless otherwise noted. (dis) = BCWQG AW guideline is for dissolved concentration. calcuation = indicates that a calculation is required to determine BCWQG. No exceedences were identified for those parameters where BCWQG was calculated. Note 2: the guideline of 0.001 mg/L is an alert concentration; the guideline of 0.002 mg/L is the BCWQG. 310 indicates parameter concentration exceeds applicable CSR AW or DW standards 0.957 indicates parameter concentration exceeds applicable CSR DW standards 1.001 molecates parameter concentration exceeds applicable CSR DW standard and long-term average BCWQG guideline 340 indicates parameter concentration exceeds applicable CSR DW standard and long-term average BCWQG guideline 340 indicates parameter concentration exceeds applicable CSR DW standard and long-term average BCWQG guideline 340 indicates parameter concentration exceeds applicable CSR DW standard and long-term average BCWQG guideline 340 indicates parameter concentration exceeds applicable CSR DW standard and long-term average BCWQG guideline 340 indicates parameter concentration exceeds applicable DW standard and long-term average BCWQG guideline 340 indicates parameter concentration exceeds applicable DW standard and long-term average BCWQG guideline 340 indicates parameter concentration exceeds applicable CSR DW standard and long-term average BCWQG guideline 340 indicates parameter concentration exceeds applicable DW standard and long-term average BCWQG guideline 340 indicates parameter concentration exceeds applicable DW standard and long-term average BCWQG guideline 340 indicates parameter concentration exceeds applicable CSR DW standard and long-term average BCWQG guideline 340 indicates parameter concentration exceeds applicable CSR DW standard and lon

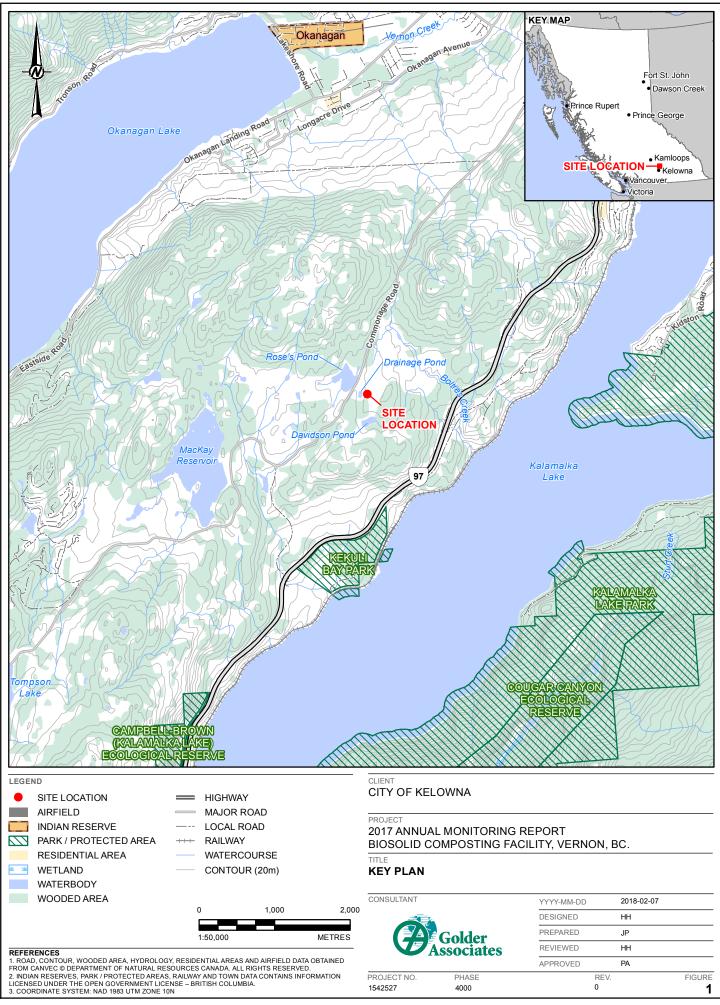
645 indicates parameter concentration exceeds applicable CSR DW standard and short-term maximum BCWQG guideline

<0.0050 indicates that the reported detection limit is greater than the applicable criteria

*Exceedance based on laboratory pH

Location												F	Rose's Pond														
ALS Laboratory ID	Aquatic Life	Drinking	BC Water Quality	T	L1502217-3	L1515479-3	L1532630-3	L1547862-1	L1625288-3	L1645255-3	L1656492-3	L1669705-3		L1698669-3	L1742616-3	L1752610-3	L1763882-3	L1777367-3	L1794599-3	L1811981-3	L1832582-3	L1924064-3	L1946645-3	L1965494-3	L1984896-3	L1994913-3	2016326-3
Date	CSR-AW	Water	Aquatic Life	es			14-Oct-14				11-Aug-15			4-Nov-15		5-Apr-16				10-Aug-16					31-Aug-17		
	(freshwater)	S CSR-DW	2 (freshwater)	Not	0						5						, .					,					
Parameters																											
Temperature (field)					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	14	19	23	21	16	5
pH (field)			<u>6.5 - 9.0</u>		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8.4	8.5	8.5	<u>9.1</u>	8.9	8.4
pH (laboratory)			<u>6.5 - 9.0</u>		8.94	8.86	8.75	8.58	8.80	8.71	8.88	8.85	8.82	8.55	8.47	8.60	8.62	8.57	8.72	8.76	8.56	8.45	8.44	8.43	8.72	8.67	8.49
conductivity (laboratory)					7350	7310	7270	7350	6030	6860	7240	6990	7520	7400	5490	5790	5940	6350	6050	6800	7030	4330	4380	4930	4890	5130	5440
total suspended solids (TSS)					10.2	9.4	27.3	17.3	9.5	8.0	6.7	<3.0	6.9	9.4	10.4	7.6	5.8	5.5	4.6	3.8	4.8	8.8	6.8	9.3	9.7	15.2	6.1
biochemical oxygen demand (5-day BOD)					<2.0	<2.0	<2.0	2.2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	4.9	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.2	2.1	<2.0
chemical oxygen demand (COD)					70 1790	78 1780	83 1830	91 1840	71 1550	75 1680	71 1690	66 1750	78 1650	69 1700	58 1310	66 1410	56 1440	61 1460	59 1440	69 1570	76 1620	46 1070	54 1130	63 1220	75 1230	80 1080	62 18.8
hardness as CaCO3					1790	1780	1030	1040	1550	1000	1690	1750	1650	1700	1310	1410	1440	1460	1440	1570	1620	1070	1130	1220	1230	1060	10.0
<i>Inorganics</i> ammonia (total; as N)	1.31 - 18.4	ън/т	0.424 4.94*	pH/T	0.0188	0.0231	0.0181	0.0132	0.0131	0.0266	0.0089	0.0194	0.0167	0.0441	0.0117	0.0129	0.0321	0.0210	0.0184	0.0520	0.0237	0.0771	0.0228	0.0104	0.0117	0.0097	0.0187
nitrate (as N)	400	10	<u>0.131 - 1.84*</u> <u>3.0*</u>	privi	0.28	<0.25	<0.25	<0.25	<0.25	<0.25	0.0039	< 0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	0.57	<0.10	<0.10	<0.10	<0.10	0.0187
nitrite (as N)	0.2 - 2		0.02 - 0.20*	CI	<0.050	<0.050	<0.050	<0.050	<0.050	<0.25	<0.050	<0.25	<0.25	<0.25	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
total nitrogen	0.2 2		0.02 - 0.20	0.	1.79	1.91	1.77	2.04	1.70	1.72	1.67	1.74	1.85	1.99	1.67	1.78	1.55	1.54	1.64	1.66	1.55	1.77	1.43	1.58	1.64	1.85	1.81
chloride	1500	250	150 ⁺ , 600*		549	584	645	634	532	578	530	573	613	596	468	482	479	515	533	632	537	436	397	377	444	443	443
ortho-phosphate (dissolved; as P)			0.005 to 0.015	see note 1	0.010	0.0013	<0.0010	0.0011	<0.0010	<0.0010	<0.0010	<0.0010	0.0012	<0.0010	0.0023	< 0.0010	0.0011	< 0.0010	< 0.0010	0.0020	< 0.0010	0.0114	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Total Kjeldahl Nitrogen					-	-	-	-	-	-	-	-	-	-	-	1.74	1.53	1.54	1.64	1.61	1.55	1.20	1.43	1.58	1.64	1.85	1.70
Microbiological Analyses															1												
total coliforms (mpn/100mL)					43500	29900	1960	57	24200	41100	19900	7270	236	225	65	205	387	921	>2419.6	<1	2480	225	19900	29900	17300	2480	25
Escherichia coli (mpn/100mL)					7	<1	1	<1	6	82	16	52	5	<1	3	43	42	11	326	<1	<10	4	12	1	10	2	<1
Total Metals																											
aluminum		9.5		solved Metals	<0.015	0.029	<0.015	<0.030	0.021	0.016	<0.015	<0.015	<0.015	0.080	0.022	0.030	<0.015	<0.015	0.021	0.024	0.015	0.021	<0.015	0.024	0.0218	<0.015	0.0090
antimony	0.09	0.006	0.009	W	0.00071	0.00086	0.00082	<0.0010	0.00066	0.00074	0.00070	0.00079	0.00085	0.00074	0.00059	0.00060	0.00071	0.00054	0.00063	0.00060	0.00063	<0.00050	<0.00050	<0.00050	0.00057	0.00056	0.00053
arsenic	0.05	0.01	0.005		0.0058	<u>0.0063</u>	0.0067	<u>0.0058</u>	0.0068	0.0060	0.0056	0.0061	0.0062	0.0058	0.0045	0.00405	0.00475	0.00441	0.00519	0.00501	0.00525	0.00332	0.00382	0.00419	0.00483	0.00422	0.00442
barium	10	1	<u>1</u>	W	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.024	0.025	0.02	0.021	<0.020	<0.020
beryllium	0.0015	0.008	<u>0.00013</u>	W	<0.010	<0.010	<0.010	<0.010	<0.0050	<0.010	<0.010	<0.010	<0.010	<0.010	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00050	<0.00010	<0.00050	<0.00020
bismuth	10		10		<0.40 <0.20	-	-	- <0.20	-	<0.40	-	-	<0.40	<0.40	< 0.20	< 0.40	<0.20	<0.20	<0.20	< 0.40	< 0.40	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
boron	12	5	<u>1.2</u>	and the state of t	<0.20	<0.20 <0.00025	<0.20 <0.00025	<0.20	0.10 <0.000050	<0.20 <0.000050	<0.20 <0.000050	<0.20 <0.000050	<0.20	<0.20 <0.000050	<0.10 <0.000050	<0.20 <0.000025	<0.10 <0.000025	<0.10 <0.000025	<0.10 <0.000025	<0.20 <0.000025	<0.20 <0.000025	<0.10	<0.10 <0.000025	<0.10 <0.00025	<0.10 <0.000050	<0.10	<0.10 <0.000010
cadmium calcium	0.0005 - > 0.004	H 0.005	See Dis	solved Metals	<0.00025	<0.00025 48.7	<0.00025 41.5	<0.00050	<0.000050 57.2	<0.000050	<0.000050	<0.000050 47.6	<0.000050 47.2	<0.000050 47.8	<0.000050 65.4	<0.000025	<0.000025	<0.000025 62.2	<0.000025	<0.000025	<0.000025	<0.000025 84.8	<0.000025 80.9	<0.000025 85.4	<0.0000050 81.3	<0.000025 · 71.3	<0.000010
chromium	0.010 ^{VI} . 0.090 ^{III}	V 0.05	0.001 ^{VI} , 0.0089 ^{III}	w	<0.0025	<0.0025	<0.0025	<0.0050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<02.2	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
cobalt	0.04	0.001	0.004	vv	<0.00025	<0.00020	<0.00020	<0.0030	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00030	<0.00050	< 0.00030
copper	0.020 - 0.090	H 1.5	calculation	н	<0.0025	<0.0025	<0.0025	<0.0050	< 0.0025	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00030	<0.00030	<0.00050	<0.00050	<0.00050	<0.00030	<0.00030	<0.0010	<0.0025	<0.00030
iron	0.020 0.000	6.5	1*		< 0.060	< 0.060	<0.060	<0.060	< 0.030	<0.060	<0.060	<0.060	<0.060	0.130	0.039	<0.060	< 0.030	<0.030	< 0.030	<0.060	<0.060	<0.050	<0.050	<0.050	< 0.030	<0.050	< 0.030
lead	0.040 - 0.160	H 0.01	calculation	н	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	<0.0010	<0.0010	<0.0010	< 0.0010	<0.0010	< 0.0010	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	< 0.00050	<0.00050
lithium		0.008			0.073	0.078	0.076	0.076	0.063	0.066	0.068	0.073	0.073	0.073	0.054	0.0540	0.0592	0.0601	0.0647	0.0622	0.0752	0.0410	0.0398	0.0547	0.0471	0.0503	0.0558
magnesium					393	403	422	419	336	377	389	392	393	384	280	306	308	300	314	354	370	231	226	255	277	231	288
manganese		1.5	calculation	Н	0.030	0.043	0.015	<0.010	0.036	0.096	0.012	0.035	0.026	0.063	0.201	0.113	0.0511	0.0312	0.0355	0.0356	0.0426	0.0789	0.0449	0.0527	0.102	0.0169	0.0514
mercury	0.00025	0.001			<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.0000050	<0.000050	<0.000050	<0.000050	<0.0000050	<0.0000050	<0.0000050	< 0.0000050	<0.000050	<0.000050	< 0.0000050 <	<0.000050
molybdenum	10	0.25	<1		<0.0010	0.0012	<0.0010	0.0012	0.0013	0.0012	0.0012	0.0011	0.0011	<0.0010	0.0016	0.0017	0.0019	0.0014	0.0014	0.0011	<0.0010	0.0025	0.0023	0.0022	0.0023	0.0020	0.0019
nickel	0.250 - 1.5	H 0.08	<u>0.15</u>	H ≥ 180 mg/L CaCO3; W	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0025	<0.0025	<0.0025	<0.0025	0.0026	<0.0025	<0.0025	<0.0025	<0.0025	0.0012	<0.0025	0.0011
phosphorus			0.005 to 0.015	see note 1	<0.60	-	-	-	-	<0.60	-	-	<0.60	<0.60	<0.30	<0.60	<0.30	<0.30	<0.30	<0.60	<0.60	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
potassium					119	-	-	-	-	108			118	115	84.6	89.9	91.6	83.8	92.7	103	105	70.3	69.1	79.8	82.2	70.4	85.2
selenium	0.02	0.01	0.002	see note 2	<0.0050	<0.0050	<0.0050	<0.010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	< 0.0010	0.00051	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	0.00057	<0.00025	0.00030	0.000267	0.00027	0.00022
silicon	0.0005 0.045		0.0045	11 . 100	0.24 <0.000050	- <0.000050	- <0.000050	- <0.00010	- <0.000050	0.32	-	-	0.12	0.26	1.49	0.15	0.253	0.129	0.348	0.38	0.43	1.49	0.54	1.06	1.07	0.96	1.17
silver	0.0005 - 0.015	H 0.02	<u>0.0015</u>	H > 100 mg/L						< 0.000050	<0.000050	< 0.000050	< 0.000050	< 0.000050	<0.000050	<0.000050	< 0.000050	<0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	0.000134			< 0.000020
sodium strontium		200			1200 0.293	1240	1230	1290	942	1080 0.485	1150	1200	1200 0.410	<u>1170</u>	847 0.620	935 0.711	969 0.693	935 0.600	991 0.580	1050 0.480	1090 0.483	659 0.802	632 0.785	776 0.777	786 0.770	704 0.686	825 0.737
thallium	0.003	2.3	0.0008	W	<0.00050	- <0.00050	- <0.00050	- <0.0010	- <0.00020	0.485 <0.00020	- <0.00020	- <0.00020	0.410 <0.00020	0.434 <0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	0.483 <0.00020	<0.00020	<0.00020	<0.000050			<0.000020
titanium	0.003		0.0000	٧V	<0.00050	<0.00050	<0.00050	<0.0010	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	0.013	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.000050	<0.00010	<0.000050 -	<0.000020
tin		2.5			<0.060	-	-	2.000	-	<0.050	-0.000	-0.000	<0.050	<0.050	<.050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050		<0.00050
uranium	0.085	0.02	0.0085	W	0.00403	0.00462	0.00461	0.00481	0.00486	<0.000 0.00485	- 0.00459	0.00452	0.00495	<0.000 0.00456	0.00466	0.00514	0.00574	0.00486	0.00518	0.00483	0.00434	0.00607	0.00562	0.00553	0.00591	0.00560	0.00637
vanadium					<0.060	<0.060	<0.060	<0.060	< 0.030	<0.060	<0.060	<0.060	<0.060	<0.060	< 0.030	<0.0025	<0.0025	< 0.0025	< 0.0025	<0.0025	<0.0025	<0.0025	<0.0025	< 0.0025	0.00099	<0.0025	<0.0010
zinc	0.075 - > 2.4	Н 3	calculation	H; H > 90 mg/L	<0.010	<0.010	<0.010	<0.010	<0.0050	<0.010	<0.010	< 0.010	< 0.010	< 0.010	< 0.0050	<0.010	<0.0050	< 0.0050	< 0.0050	<0.010	< 0.010	<0.015	<0.015	< 0.015	< 0.0050	<0.015	< 0.0060
				,						2.010	2.010	2.3.0	2.3.0		1												

	Location		T		1											Rose's Pond														
	ALS Laboratory ID	Aquatic Life		Drinking	i i	BC Water Quality		L1502217-3	L1515479-3	3 L1532630-3	L1547862-1	L1625288-3	L 1645255-3	L1656492-3			1 1698669-3	L1742616-3	I 1752610-3	1763882-3	1777367-3	1794599-3	I 1811981-3	I 1832582-3	1 1924064-3	3 L1946645-3	1965494-3	1 1984896-3	1994913-3	1 2016326-3
	Date	CSR-AW	es	Water	0	Aquatic Life	es		9-Sep-14		17-Nov-14	10-Jun-15		11-Aug-15			4-Nov-15			3-May-16	1-Jun-16		10-Aug-16			21-Jun-17				
	Puio	(freshwater)	Not	CSR-DW		(freshwater)	Not						20 00. 10	i i nag i o	1 000 10			o mai ro	07.p. 10	e may re	· oun ro	0 001 10	io nag io	21.000	0 may 11	21 0001 11	20 00. 11	orrag ii	20 000 11	01 000 11
Dissolved Metals						· · · · ·																								\rightarrow
aluminum				9.5		0.05 ⁺ (dis)	pH >6.5	<0.015	<0.015	<0.015	<0.030	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	0.0086	0.0073	< 0.0050	<0.0050	<0.0050	0.0051	<0.0050	<0.0050
antimony		0.09		0.006				0.00070	0.00078	0.00075	<0.0010	0.00070	0.00074	0.00072	0.00075	0.00077	0.00075	0.00053	0.00052	0.00062	0.00051	0.00057	0.00062	0.00066	< 0.00050	<0.00050	<0.00050	<0.00050	0.0005	<0.00050
arsenic		0.05		0.01				0.0057	0.0058	0.0063	0.0062	0.0068	0.0056	0.0055	0.0060	0.0060	0.0057	0.0046	0.00416	0.00463	0.00442	0.00502	0.00523	0.00521	0.00310	0.00372	0.00410	0.00440	0.00377	<0.00050
barium		10		1				<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.021	0.023	<0.020	<0.020	<0.020	<0.020
beryllium		0.0015		0.008				<0.010	<0.010	<0.010	<0.010	<0.0050	<0.010	<0.010	<0.010	<0.010	<0.010	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.00050	<0.00050	<0.00050	<0.00020
bismuth								<0.40	-	-	-	-	<0.40	-	-	<0.40	<0.40	<0.20	<0.40	<0.20	<0.20	<0.20	<0.40	<0.40	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
boron		12		5				<0.20	<0.20	<0.20	<0.20	0.12	<0.20	<0.20	<0.20	<0.20	<0.20	<0.10	<0.20	<0.10	<0.10	0.11	<0.20	<0.20	<0.10	<0.10	<0.10	0.11	<0.10	<0.10
cadmium		0.0005 - > 0.004	I H	0.005		calculation (dis)	Н	<0.00025	<0.00025	<0.00025	<0.00050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000025	<0.000025	<0.000025	<0.000025	<0.000025	<0.000025	< 0.000025	<0.000025	<0.000025	<0.000025	<0.000025	<0.000010
calcium								37.5	47.0	41.9	43.0	58.2	53.7	45.6	45.9	44.6	47.7	65.6	70.6	72.5	65.9	59.0	51.8	51.1	76.2	81.6	83.1	78.9	71.3	6.54
chromium		0.010 ^{VI} , 0.090 ^{III}	V	0.05				<0.0025	<0.0025	<0.0025	<0.0050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	< 0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
cobalt		0.04		0.001				< 0.00050	< 0.00050	<0.00050 <0.0025	<0.0010	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00030
copper		0.020 - 0.090	н	1.5	_	0.054 (!!)	н	<0.0025	<0.0025 <0.060	<0.0025	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	< 0.0010	<0.0010	< 0.0010	< 0.0010	< 0.0010	0.0012	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
iron		0.010 0.100		6.5	_	<u>0.35* (dis)</u>		< 0.060	<0.000	<0.000	<0.060 <0.0010	<0.030 <0.0010	<0.060	<0.060	<0.060	< 0.060	<0.060	< 0.030	< 0.060	< 0.030	< 0.030	< 0.030	< 0.060	< 0.060	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.030
lead		0.040 - 0.160	н	0.01	_			<0.0010 0.072	0.0010	0.0010	0.0010	0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	<0.00050 0.0497	<0.00050 <0.0020
lithium				0.008	_			411	403	418	419	342	0.066 376	0.064 382	0.072 398	0.071 372	0.072 383	0.052 278	0.0530 300	0.0614 307	0.0615 315	0.0625 314	0.0648 349	0.0645 362	0.0382 214	0.0404 224	0.0531 246	0.0491 250	220	<0.0020 0.61
magnesium manganese				1.5				0.027	<0.010	<0.010	0.021	< 0.010	0.079	<0.010	<0.010	<0.010	<0.010	0.168	0.0464	0.0373	0.00671	0.0208	0.00583	0.0257	0.0689	0.0354	0.00622	0.0316	0.00138	0.0161
mercury		0.00025	- 1	0.001	-			<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.0000050		<0.0000050				< 0.0000050			<0.0000050		
molybdenum		10	- 1	0.25	-			< 0.0010	0.0011	< 0.0010	0.0012	0.0014	0.0014	0.0011	< 0.00020	0.0011	0.0011	0.0011	0.0014	0.0018	0.0014	0.0014	0.0012	<0.0010	0.0023	0.0024	0.0020	0.0021	0.0020	< 0.0010
nickel		0.250 - 1.5	н	0.08				< 0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0025	< 0.0025	< 0.0025	< 0.0025	0.0028	< 0.0025	< 0.0025	<0.0025	<0.0025	<0.0025	< 0.0025	< 0.0010
phosphorus					-			<0.60	-	-	-	-	<0.60	-	-	<0.60	<0.60	< 0.30	<0.60	< 0.30	< 0.30	< 0.30	<0.60	< 0.60	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
potassium								122	-	-	-	-	107	-	-	110	114	83.0	85.9	92.7	86.7	92.9	99.4	108	62.5	65.5	78.2	78.7	68.4	<2.0
selenium		0.02		0.01				<0.0050	<0.0050	<0.0050	<0.010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.00033	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	0.00054	0.00026	0.00026	0.00025	<0.00025	<0.00010
silicon								0.25	-	-	-	-	0.33	-	-	<0.10	<0.10	1.41	<0.10	0.248	0.104	0.301	0.34	0.39	1.21	0.48	0.92	0.86	0.97	0.37
silver		0.0005 - 0.015	н	0.02				<0.000050	<0.000050	<0.000050	<0.00010	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000020
sodium				200				1220	1200	1240	1250	950	1070	1120	1150	1130	1170	841	908	983	968	990	1020	1140	599	615	748	721	675	6.7
strontium				2.5				0.301				-	0.487	-	-	0.388	0.429	0.615	0.691	0.707	0.623	0.578	0.469	0.521	0.742	0.814	0.747	0.751	0.672	0.0291
thallium		0.003						< 0.00050	<0.00050	<0.00050	<0.0010	<0.00020	<0.000050	<0.00020	<0.00020		<0.000050	<0.00050	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
tin			_	2.5				< 0.060	-	-	-	-	<0.060	-	-	<0.060	<0.060	< 0.030	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
titanium		1			_			< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.020	0.012	<0.010	<0.010	<0.020	<0.020	<0.010	<0.010	<0.010	<0.010	<0.010	< 0.010
uranium		0.085	_	0.02				0.00426	0.00443	0.00445	0.00478	0.00512	0.00478	0.00468	0.00438	0.00479	0.00455	0.00472	0.00510	0.00586	0.00483	0.00505	0.00490	0.00436	0.00597	0.00597	0.00520	0.00545	0.00557	<0.00020
vanadium		0.075 0.4	k	-	_			<0.060	< 0.060	< 0.060	<0.060	< 0.030	<0.060	<0.060	<0.060	<0.060	<0.060	< 0.030	< 0.0025	<0.0025	< 0.0025	< 0.0025	<0.0025	< 0.0025	< 0.0025	< 0.0025	<0.0025	<0.0025	< 0.0025	< 0.0010
ZINC		0.075 - > 2.4	Н	3				<0.010	<0.010	<0.010	<0.010	<0.0050	<0.010	<0.010	<0.010	<0.010	<0.010	<0.0050	<0.010	<0.0050	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0125


Notes: All concentrations in milligrams per litre (mg/L), unless otherwise noted. Standards from the Contaminated Sites Regulation (CSR), updated 1 November 2017. Land Use abbreviations: AW (Aquatic Life); and DW (Drinking Water).

Standards from the Containinated Sites Regulation (CSR), updated Twoethed 2017. Land Use abbreviations: AW (Aquate Life); and DW (Drinking water). BCWQG = British Columbia Approved (updated January 2017) and Working (updated January 2017) Water Quality Guidelines. Approved WQG provided, unless otherwise noted (as W: Working WQG). H = standard is Hardness dependent; PI = standard is pH dependent; CI = standard is chloride dependent; S = refer to CSR Schedule 10; V = standard is valence dependent, VI=chromium VI and Ill=chromium III; T = standard varies with temperature (10 deg C assumed for ammonia criteria). Note 1: the guidelines provided for otho-phosphate are the BCWQG for total phosphorus (as P), and are applicable for lakes where salmonids are the predominant fish species. Guidelines are for reference only, and may not be applicable to Davidson Pond or Rose's Pond.

predominant fish species. Guidelines are for reference only, and may not be applicable to Davidson Pond or Rose's Pond. + = long-term average BCWQG AW guideline; * = short-term maximum BCWQG AW guideline. Long-term average BCWQG provided, unless otherwise noted. (dis) = BCWQG AW guideline is for dissolved concentration. calcuation = indicates that a calculation is required to determine BCWQG. No exceedences were identified for those parameters where BCWQG was calculated. Note 2: the guideline of 0.001 mg/L is an alert concentration; the guideline of 0.002 mg/L is the BCWQG. 310 indicates parameter concentration exceeds applicable CSR AW or DW standards indicates parameter concentration exceeds applicable CSR DW standard and long-term average BCWQG guideline 340 indicates parameter concentration exceeds applicable CSR DW standard and end term maximum BCWQG guideline 1 indicates parameter concentration exceeds applicable CSR DW standard and end term maximum BCWQG guideline

645 indicates parameter concentration exceeds applicable CSR DW standard and short-term maximum BCWQG guideline

<0.0050 indicates that the reported detection limit is greater than the applicable criteria

150 1:6,000 METRES

REFERENCES 1. ROAD DATA OBTAINED FROM CANVEC © DEPARTMENT OF NATURAL RESOURCES CANADA. ALL RIGHTS RESERVED. 2. IMAGERY COPYRIGHT © ESRI AND ITS LICENSORS. SOURCE: VERNON, BC ORTHOPHOTOS. USED UNDER LICENSE, ALL RIGHTS RESERVED. IMAGERY DATE: 20130115 3. COORDINATE SYSTEM: NAD 1983 UTM ZONE 11N

2

2017 ANNUAL MONITORING REPORT BIOSOLID COMPOSTING FACILITY, VERNON, BC. TITLE

SITE PLAN

PROJECT NO.

1542527

PHASE

4000

YYYY-MM-DD		2018-02-07	
DESIGNED		НН	
PREPARED		JP	
REVIEWED		HH	
APPROVED		PA	
	REV. 0		FIGURE

APPENDIX A

ALS Laboratory Certificates of Analysis (2017)

CITY OF KELOWNA ATTN: Marcia Browne Glenmore Landfill 2720 John Hindle Drive Kelowna BC V1V 2C5 Date Received: 10-MAY-17 Report Date: 18-MAY-17 18:06 (MT) Version: FINAL

Client Phone: 250-469-8796

Certificate of Analysis

Lab Work Order #: L1924064 Project P.O. #: 520747 Job Reference: 1186-202 POND C of C Numbers: Legal Site Desc:

Dean Watt, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1924064 CONTD.... PAGE 2 of 7 18-MAY-17 18:06 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1924064-1 SURFACE WATE 09-MAY-17 11:00 COMMONAGE DRAINAGE POND	L1924064-2 SURFACE WATE 09-MAY-17 10:30 DAVIDSON POND	L1924064-3 SURFACE WATE 09-MAY-17 10:05 ROSE'S POND	
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (uS/cm)	899	2500	4330	
-	Hardness (as CaCO3) (mg/L)	217	482	1070	
	рН (рН)	8.00	8.76	8.45	
	Total Suspended Solids (mg/L)	3.6	22.8	8.8	
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.915	0.0768	0.0771	
	Chloride (Cl) (mg/L)	97.6	268	436	
	Nitrate (as N) (mg/L)	1.21	old states = 0.10	0.57	
	Nitrite (as N) (mg/L)	0.0156	old States = 0.020	DLDS <0.020	
	Total Kjeldahl Nitrogen (mg/L)	2.03	1.52	1.20	
	Total Nitrogen (mg/L)	3.26	1.52	1.77	
	Orthophosphate-Dissolved (as P) (mg/L)	0.647	0.0087	0.0114	
Bacteriological Tests	E. coli (MPN/100mL)	23	1000	4	
	Coliform Bacteria - Total (MPN/100mL)	980	1000	225	
Total Metals	Aluminum (Al)-Total (mg/L)	0.0282	0.0256	0.021	
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.00050	<0.00050	
	Arsenic (As)-Total (mg/L)	0.00086	0.00273	0.00332	
	Barium (Ba)-Total (mg/L)	0.029	<0.020	0.024	
	Beryllium (Be)-Total (mg/L)	<0.0010	<0.0010	<0.0010	
	Bismuth (Bi)-Total (mg/L)	<0.20	<0.20	<0.20	
	Boron (B)-Total (mg/L)	0.15	<0.10	<0.10	
	Cadmium (Cd)-Total (mg/L)	0.0000125	<0.000010	<0.000025	
	Calcium (Ca)-Total (mg/L)	56.2	64.5	84.8	
	Chromium (Cr)-Total (mg/L)	<0.0010	<0.0010	<0.0010	
	Cobalt (Co)-Total (mg/L)	0.00030	<0.00030	OLA <0.00050 DLA	
	Copper (Cu)-Total (mg/L)	0.0032	<0.0010	<0.0025	
	Iron (Fe)-Total (mg/L)	0.061	0.043	<0.050	
	Lead (Pb)-Total (mg/L)	<0.00050	<0.00050	<0.00050	
	Lithium (Li)-Total (mg/L)	0.0102	0.0323	0.0410	
	Magnesium (Mg)-Total (mg/L)	23.3	82.6	231	
	Manganese (Mn)-Total (mg/L)	0.0980	0.0358	0.0789	
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	<0.000050	
	Molybdenum (Mo)-Total (mg/L)	0.0043	0.0011	0.0025	
	Nickel (Ni)-Total (mg/L)	0.0017	0.0014	DLA <0.0025	
	Phosphorus (P)-Total (mg/L)	0.85	<0.30	<0.30	
	Potassium (K)-Total (mg/L)	19.5	32.5	70.3	
	Selenium (Se)-Total (mg/L)	0.000512	0.00013	0.00057	

L1924064 CONTD.... PAGE 3 of 7 18-MAY-17 18:06 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1924064-1 SURFACE WATE 09-MAY-17 11:00 COMMONAGE DRAINAGE POND	L1924064-2 SURFACE WATE 09-MAY-17 10:30 DAVIDSON POND	L1924064-3 SURFACE WATE 09-MAY-17 10:05 ROSE'S POND	
Grouping	Analyte				
WATER					
Total Metals	Silicon (Si)-Total (mg/L)	2.96	0.76	1.49	
	Silver (Ag)-Total (mg/L)	<0.000020	<0.000020	DLA <0.000050	
	Sodium (Na)-Total (mg/L)	103	405	659	
	Strontium (Sr)-Total (mg/L)	0.541	0.775	0.802	
	Thallium (TI)-Total (mg/L)	<0.00020	<0.00020	<0.00020	
	Tin (Sn)-Total (mg/L)	<0.00050	<0.00050	<0.00050	
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	
	Uranium (U)-Total (mg/L)	0.00241	0.00545	0.00607	
	Vanadium (V)-Total (mg/L)	0.00088	<0.0010	<0.0025	
	Zinc (Zn)-Total (mg/L)	0.0270	<0.0060	<0.015	
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	
	Aluminum (Al)-Dissolved (mg/L)	0.0056	<0.0050	<0.0050	
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	
	Arsenic (As)-Dissolved (mg/L)	0.00081	0.00269	0.00310	
	Barium (Ba)-Dissolved (mg/L)	0.027	<0.020	0.021	
	Beryllium (Be)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	
	Boron (B)-Dissolved (mg/L)	0.13	<0.10	<0.10	
	Cadmium (Cd)-Dissolved (mg/L)	0.0000102	ol.000010	DLA <0.000025	
	Calcium (Ca)-Dissolved (mg/L)	51.0	60.5	76.2	
	Chromium (Cr)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	
	Cobalt (Co)-Dissolved (mg/L)	<0.00030	<0.00030	<0.00050	
	Copper (Cu)-Dissolved (mg/L)	0.0025	<0.0010	<0.0010	
	Iron (Fe)-Dissolved (mg/L)	<0.030	<0.030	<0.050	
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	
	Lithium (Li)-Dissolved (mg/L)	0.0098	0.0325	0.0382	
	Magnesium (Mg)-Dissolved (mg/L)	21.8	80.3	214	
	Manganese (Mn)-Dissolved (mg/L)	0.0835	0.0267	0.0689	
	Mercury (Hg)-Dissolved (mg/L)	<0.0000050	<0.000050	<0.0000050	
	Molybdenum (Mo)-Dissolved (mg/L)	0.0041	0.0011	0.0023	
	Nickel (Ni)-Dissolved (mg/L)	0.0015	0.0014	<0.0025	
	Phosphorus (P)-Dissolved (mg/L)	0.76	<0.30	<0.30	
	Potassium (K)-Dissolved (mg/L)	18.3	30.4	62.5	
	Selenium (Se)-Dissolved (mg/L)	0.000579	0.00012	0.00054	
	Silicon (Si)-Dissolved (mg/L)	2.71	0.67	1.21	
	Silver (Ag)-Dissolved (mg/L)	<0.000020	<0.000020	DLA <0.000050	

L1924064 CONTD.... PAGE 4 of 7 18-MAY-17 18:06 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1924064-1 SURFACE WATE 09-MAY-17 11:00 COMMONAGE DRAINAGE POND	L1924064-2 SURFACE WATE 09-MAY-17 10:30 DAVIDSON POND	L1924064-3 SURFACE WATE 09-MAY-17 10:05 ROSE'S POND	
Grouping	Analyte				
WATER					
Dissolved Metals	Sodium (Na)-Dissolved (mg/L)	96.0	386	599	
	Strontium (Sr)-Dissolved (mg/L)	0.515	0.752	0.742	
	Thallium (TI)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	
	Tin (Sn)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	
	Uranium (U)-Dissolved (mg/L)	0.00202	0.00574	0.00597	
	Vanadium (V)-Dissolved (mg/L)	0.00077	DLA <0.0010	DLA <0.0025	
	Zinc (Zn)-Dissolved (mg/L)	0.0242	<0.0050	<0.0050	
Aggregate	BOD (mg/L)	<2.0	<2.0	<2.0	
Organics	COD (mg/L)	28	49	46	

Reference Information

Qualifiers for Sample Submission Listed:

Qualifier	Description
WSMD	Water sample(s) for dissolved mercury analysis was not submitted in glass or PTFE container with HCI preservative. Results may be biased low.

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)	
Matrix Spike	COD	MS-B	L1924064-1, -2, -3	
Matrix Spike	Barium (Ba)-Total	MS-B	L1924064-1, -2, -3	
Matrix Spike	Boron (B)-Total	MS-B	L1924064-1, -2, -3	
Matrix Spike	Calcium (Ca)-Total	MS-B	L1924064-1, -2, -3	
Matrix Spike	Magnesium (Mg)-Total	MS-B	L1924064-1, -2, -3	
Matrix Spike	Manganese (Mn)-Total	MS-B	L1924064-1, -2, -3	
Matrix Spike	Potassium (K)-Total	MS-B	L1924064-1, -2, -3	
Matrix Spike	Sodium (Na)-Total	MS-B	L1924064-1, -2, -3	
Matrix Spike	Strontium (Sr)-Total	MS-B	L1924064-1, -2, -3	
Matrix Spike	Total Nitrogen	MS-B	L1924064-1, -2, -3	
Matrix Spike	Orthophosphate-Dissolved (as P)	MS-B	L1924064-1, -2, -3	

 Qualifier
 Description

 DLA
 Detection Limit adjusted for required dilution

 DLDS
 Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.

 MS-B
 Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
BOD5-VA	Water	Biochemical Oxygen Demand- 5 day	APHA 5210 B- BIOCHEMICAL OXYGEN DEMAND
oxygen demand (BOD) are dissolved oxygen meter. D	e determined issolved BOI	dures adapted from APHA Method 5210 B - "Biochemic by diluting and incubating a sample for a specified time O (SOLUBLE) is determined by filtering the sample thro a nitrification inhibitor to the diluted sample prior to incu	e period, and measuring the oxygen depletion using a bugh a glass fibre filter prior to dilution. Carbonaceous
CL-IC-N-VA	Water	Chloride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion C	hromatography with conductivity and/or UV detection.	
COD-COL-VA	Water	Chemical Oxygen Demand by Colorimetric	APHA 5220 D. CHEMICAL OXYGEN DEMAND
This analysis is carried out determined using the close		dures adapted from APHA Method 5220 "Chemical Ox urimetric method.	ygen Demand (COD)". Chemical oxygen demand is
EC-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is carried out electrode.	using proce	dures adapted from APHA Method 2510 "Conductivity"	. Conductivity is determined using a conductivity
EC-SCREEN-VA	Water	Conductivity Screen (Internal Use Only)	APHA 2510
Qualitative analysis of con-	ductivity whe	re required during preparation of other tests - e.g. TDS	, metals, etc.
ECOLI-COLI-ENV-VA	Water	E.coli by Colilert	APHA METHOD 9223
determined simultaneously	/. The sample rs and then the	dures adapted from APHA Method 9223 "Enzyme Subset is mixed with a mixture hydrolyzable substrates and the number of wells exhibiting a positive response are c	hen sealed in a multi-well packet. The packet is
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
		ss) is calculated from the sum of Calcium and Magnesi icentrations are preferentially used for the hardness cal	
HG-D-CVAA-VA	Water	Diss. Mercury in Water by CVAAS or CVAFS	APHA 3030B/EPA 1631E (mod)
Water samples are filtered with stannous chloride, and			xidation using bromine monochloride prior to reduction
HG-T-CVAA-VA	Water	Total Mercury in Water by CVAAS or CVAFS	EPA 1631E (mod)
Water samples undergo a	cold-oxidatio	n using bromine monochloride prior to reduction with st	tannous chloride, and analyzed by CVAAS or CVAFS.

Reference Information

MET-D-CCMS-VA	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filtered	l (0.45 um), p	preserved with nitric acid, and analyzed by CRC ICPMS.	
Method Limitation (re: Sult	fur): Sulfide a	and volatile sulfur species may not be recovered by this	method.
MET-T-CCMS-VA	Water	Total Metals in Water by CRC ICPMS	EPA 200.2/6020A (mod)
Water samples are digeste	ed with nitric	and hydrochloric acids, and analyzed by CRC ICPMS.	
Method Limitation (re: Sult	fur): Sulfide a	and volatile sulfur species may not be recovered by this	method.
N-T-COL-VA	Water	Total Nitrogen in water by Colour	APHA4500-P(J)/NEMI9171/USGS03-4174
		dures adapted from APHA Method 4500-P (J) "Persulph lational Environmental Methods Index - Nemi method 57	
NH3-F-VA	Water	Ammonia in Water by Fluorescence	APHA 4500 NH3-NITROGEN (AMMONIA)
This analysis is carried ou of Chemistry, "Flow-injecti al.	t, on sulfuric on analysis v	acid preserved samples, using procedures modified fror with fluorescence detection for the determination of trace	m J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society e levels of ammonium in seawater", Roslyn J. Waston et
NH3-F-VA	Water	Ammonia in Water by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
			m J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society e levels of ammonium in seawater", Roslyn J. Waston et
NO2-L-IC-N-VA	Water	Nitrite in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion C	chromatography with conductivity and/or UV detection.	
NO3-L-IC-N-VA	Water	Nitrate in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion C	Chromatography with conductivity and/or UV detection.	
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H "pH Value"
This analysis is carried ou electrode	t using proce	edures adapted from APHA Method 4500-H "pH Value".	The pH is determined in the laboratory using a pH
It is recommended that thi	•		
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H pH Value
electrode	01	dures adapted from APHA Method 4500-H "pH Value".	The pH is determined in the laboratory using a pH
It is recommended that thi	-		
PO4-DO-COL-VA	Water	Diss. Orthophosphate in Water by Colour	APHA 4500-P Phosphorus
colourimetrically on a sam	ple that has ssolved solid	edures adapted from APHA Method 4500-P "Phosphorus been lab or field filtered through a 0.45 micron membrar s (i.e. seawaters, brackish waters) may produce a negat	ne filter.
TCOLI-COLI-ENV-VA	Water	Total coliform by Colilert	APHA METHOD 9223
determined simultaneously	y. The sampl irs and then t	edures adapted from APHA Method 9223 "Enzyme Subs e is mixed with a mixture hydrolyzable substrates and the the number of wells exhibiting a positive response are co obable number).	nen sealed in a multi-well packet. The packet is
TKN-CALC-VA	Water	TKN in Water (Calculation)	BC MOE LABORATORY MANUAL (2005)
Total Kjeldahl Nitrogen is a	a calculated	parameter. Total Kjeldahl Nitrogen (calc) = Total Nitroge	en - [Nitrite (as N) + Nitrate (as N)].
TSS-VA	Water	Total Suspended Solids by Gravimetric	APHA 2540 D - GRAVIMETRIC
Solids (TSS) are determin	ed by filtering	edures adapted from APHA Method 2540 "Solids". Solids g a sample through a glass fibre filter, TSS is determined d solid content (i.e. seawaters, brackish waters) may pro of samples.	d by drying the filter at 104 degrees celsius.
** ALS test methods may inc	orporate mo	difications from specified reference methods to improve	performance.
The last two letters of the a	bove test co	de(s) indicate the laboratory that performed analytical an	alysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

Reference Information

VA

ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample. mg/kg wwt - milligrams per kilogram based on wet weight of sample. mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample. mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Short Holding Time

ALS) Enul

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC #

Page ____of ____

Report To		Report Fo	rmat / Distribut	ion		Serv	ice R	eque	sted	(Rush	for ro	utine #	analys	is sub	oject to) avail:	ability)	,
Company:	City of Kelowna	Standard	Other									s - Busi						
Contact:	Marcia Browne	PDF	✓Excel	Digital	Fax										ALS to C			
Address:	2720 John Hindle Drive. Kelowna BC V1V2C5	Email 1:	mbrowne@kelo	wna, <u>ca</u>		<u> </u>							· · · · · · · · · · · · · · · · · · ·		ALS to		m TAT	_
		Email 2:	mlewis@kelown	a.ca		OSa	me Day	/ or We	ekend	Emerg	ency -	Contac	t ALS I	to Conf	firm TA	т		
Phone:	250-469-8796 Fax: 250-862-3342	Email 3:								A	nalys	sis Re	aues	st				
Invoice To	Same as Report ? Ves No	Cilent / Pr	oject Informatio	on		Ple	ase ir	ndicat	e bek	w Fil	tered	, Pres	serve	d or b	oth (F	[:] , P, F	F/P)	
Hardcopy of I	Invoice with Report? 🔲 Yes 🕢 No	Job #:	1186-202 PONI	<u> </u>														
Company:		PO / AFE:	520747															I
Contact:		LSD:												ا ا				10
Address:						1								1 1				Der
Phone:	Fax:	Quote #:					» ا		<u>5</u>			TKN						Number of Containers
Lab	Vork Order #	ALS	Deen Meth	Commission] .	eta		ы	nia		Ę,	N N	SSS				ပိ
([2]	use only)	Contact:	Dean Watt	Sampler:		etals	<u></u>	9	Ē	omn	٩	ğ	NO3-N	up 1				, G
Sample			Date	Time	Comple Trees	Total metals	Dissolved metals	BOD,COD	Coliform,	TSS, Ammonia	0-PO4-P	Total Nitrogen,	NO2-N,	al ha		Chloride		шре
#	(This description will appear on the r	eport)	(dd-mmm-yy)	(hh:mm)	Sample Type	Lot	Diss	1 B C B	⊢	TSS	Ч Ч	Tot	0 Z	Total	ы Ш	ਤਿੱ	펍	ÑZ
	Commonage Drainage Pond		MAY 9/17	11:00	Surface Water	X	X	X	X	Х	Х	X	X	X	X	X	X	
	Davidson Pond		09/05/17	10:30	Surface Water	X	X	Х	X	Х	Х	X	X	X	X	X	,Χ	
	Rose's Pond		09/05/17	10:05an	Surface Water	X	X	X	X	X	Х	Х	X	X	X	X	X	
				10	F													
			\sim		·		<u> </u>		}			├ ──'		<u> </u>	<u>├ · · - </u>	\vdash		-
		· · · · · · · · · · · · · · · · · · ·										<u> </u> !		<u> </u>				
	Please return cooler and icepacks with replacement	t bottles and processo	<u>+</u>									ļ		 		<u> </u>		
								I DIE										
				T UUU U								1						
																	[
				+	L1924064-CC	FC							<u> </u>					
			· · · ·	+						ı		<u> </u>	—			'		┣—
				<u> </u>		<u> </u>						<u> </u>	_	<u> </u>		<u> </u>		<u> </u>
	Special Instructions / Regulations with wat	ter or land use (CCN	E-Freshwater A	Aquatic Life/BC	CSR - Commerce	ial/Al	B Tier	1 - N	latura	ul, etc	:) / Hī	azard	ous l	Detail	s			
Please use (CCME/ BC WQG guidelines for both Davidson Pond a	and Rose's Pond for 1	Total Metals Ana	lysis and continu	e using BC CSR	guide	lines	for Co	omma	nage	Drai	nage	Pond	. Plea	ase re	turn c	cooler	·, ice
	eplacment bottles and preservatives. Thank you																	
		mplete all portions o										- L						
	By the use of this form the u	iser acknowledges a	and agrees with	the Terms and	Conditions as p	orovid	ied or	ם a se יושום א	epara	te Exi	cel ta bla fo	10. 37.001	mme	n 9n^	lucar			
	Also provided on another Excel tab are the AL	S location addresses	S, phone numbe	ers and sample	container / pres	ervat	ion / I		HIPM	ne tal ENTA		FICA		/lah	INSES	• • • • • • • • • • • • • • • • • • • •	1	
			Date:	Time:	y) Examplerature:	_	ified b			Dat		<u>TOV</u>	Tim		.30 01		ervati	
Released b	y: Date (dd-mmm-yy) Time (hh-mm)	Received by:	MAY 1 0 2017			_	mea r	-y.			. .				ſ		/ No 1	
		JC		8:30/p	0.6 00	·											es add	SIF
				,											OFILE	- 00 0/	0 5	

CITY OF KELOWNA ATTN: Marcia Browne Glenmore Landfill 2720 John Hindle Drive Kelowna BC V1V 2C5 Date Received:22-JUN-17Report Date:29-JUN-17Version:FINAL

Client Phone: 250-469-8796

Certificate of Analysis

Lab Work Order #: L1946645 Project P.O. #: 520747 Job Reference: 1186-202 POND C of C Numbers: Legal Site Desc:

Dean Watt, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1946645 CONTD.... PAGE 2 of 7 29-JUN-17 18:49 (MT) Version: FINAL

O uturi :	Sample ID Description Sampled Date Sampled Time Client ID	L1946645-1 Surface Water 21-JUN-17 11:15 COMMONAGE DRAINAGE POND	L1946645-2 Surface Water 21-JUN-17 11:15 DAVIDSON POND	L1946645-3 Surface Water 21-JUN-17 11:15 ROSE'S POND
Grouping	Analyte			
WATER				
Physical Tests	Conductivity (uS/cm)	1590	2720	4380
	Hardness (as CaCO3) (mg/L)	484	514	1130
	рН (рН)	8.23	8.89	8.44
	Total Suspended Solids (mg/L)	19.2	24.2	6.8
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	10.6	0.0161	0.0228
	Chloride (Cl) (mg/L)	132	285 DLDS	397
	Nitrate (as N) (mg/L)	1.72	<0.10	<0.10
	Nitrite (as N) (mg/L)	0.287	<0.020	<0.020
	Total Kjeldahl Nitrogen (mg/L)	23.5	1.75	1.43
	Total Nitrogen (mg/L)	25.5	1.75	1.43
	Orthophosphate-Dissolved (as P) (mg/L)	1.65	<0.0010	<0.0010
Bacteriological Tests	E. coli (MPN/100mL)	<10000	5	12
	Coliform Bacteria - Total (MPN/100mL)	90000	4610	19900 DLA
Total Metals	Aluminum (Al)-Total (mg/L)	0.215	0.174	<0.015
	Antimony (Sb)-Total (mg/L)	0.00070	<0.00050	<0.00050
	Arsenic (As)-Total (mg/L)	0.00447	0.00314	0.00382
	Barium (Ba)-Total (mg/L)	0.056	<0.020	0.025
	Beryllium (Be)-Total (mg/L)	<0.0010	<0.0010	<0.0010
	Bismuth (Bi)-Total (mg/L)	<0.20	<0.20	<0.20
	Boron (B)-Total (mg/L)	0.17	<0.10	<0.10
	Cadmium (Cd)-Total (mg/L)	0.000285	0.000010	ol.000025
	Calcium (Ca)-Total (mg/L)	105	58.1	80.9
	Chromium (Cr)-Total (mg/L)	<0.0010	0.0011	<0.0010
	Cobalt (Co)-Total (mg/L)	0.00081	<0.00030	O.00050
	Copper (Cu)-Total (mg/L)	0.0544	<0.0010	<0.0025
	Iron (Fe)-Total (mg/L)	0.484	0.233	ola <0.050
	Lead (Pb)-Total (mg/L)	0.00123	<0.00050	<0.00050
	Lithium (Li)-Total (mg/L)	0.0178	0.0348	0.0398
	Magnesium (Mg)-Total (mg/L)	54.8	90.1	226
	Manganese (Mn)-Total (mg/L)	0.272	0.0326	0.0449
	Mercury (Hg)-Total (mg/L)	0.000062	<0.0000050	<0.0000050
	Molybdenum (Mo)-Total (mg/L)	0.0119	0.0012	0.0023
	Nickel (Ni)-Total (mg/L)	0.0044	0.0020	DLA <0.0025
	Phosphorus (P)-Total (mg/L)	2.59	<0.30	<0.30
	Potassium (K)-Total (mg/L)	44.5	35.9	69.1
	Selenium (Se)-Total (mg/L)	0.00187	0.00015	<0.00025

L1946645 CONTD.... PAGE 3 of 7 29-JUN-17 18:49 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1946645-1 Surface Water 21-JUN-17 11:15 COMMONAGE DRAINAGE POND	L1946645-2 Surface Water 21-JUN-17 11:15 DAVIDSON POND	L1946645-3 Surface Water 21-JUN-17 11:15 ROSE'S POND	
Grouping	Analyte				
WATER					
Total Metals	Silicon (Si)-Total (mg/L)	4.76	0.57	0.54	
	Silver (Ag)-Total (mg/L)	0.000227	<0.000020	DLA <0.000050	
	Sodium (Na)-Total (mg/L)	135	431	632	
	Strontium (Sr)-Total (mg/L)	1.10	0.766	0.785	
	Thallium (TI)-Total (mg/L)	<0.00020	<0.00020	<0.00020	
	Tin (Sn)-Total (mg/L)	0.00080	<0.00050	<0.00050	
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	
	Uranium (U)-Total (mg/L)	0.00984	0.00525	0.00562	
	Vanadium (V)-Total (mg/L)	0.00193	0.0011	DLA <0.0025	
	Zinc (Zn)-Total (mg/L)	0.0574	DLA <0.0060	<0.015	
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	
	Aluminum (AI)-Dissolved (mg/L)	0.0818	<0.0050	<0.0050	
	Antimony (Sb)-Dissolved (mg/L)	0.00054	<0.00050	<0.00050	
	Arsenic (As)-Dissolved (mg/L)	0.00449	0.00308	0.00372	
	Barium (Ba)-Dissolved (mg/L)	0.043	<0.020	0.023	
	Beryllium (Be)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	
	Boron (B)-Dissolved (mg/L)	0.16	<0.10	<0.10	
	Cadmium (Cd)-Dissolved (mg/L)	0.000159	DLA <0.000010	DLA <0.000025	
	Calcium (Ca)-Dissolved (mg/L)	99.5	55.8	81.6	
	Chromium (Cr)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	
	Cobalt (Co)-Dissolved (mg/L)	0.00059	<0.00030	DLA <0.00050	
	Copper (Cu)-Dissolved (mg/L)	0.0142	<0.0010	<0.0010	
	Iron (Fe)-Dissolved (mg/L)	0.144	<0.030	DLA <0.050	
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	
	Lithium (Li)-Dissolved (mg/L)	0.0172	0.0353	0.0404	
	Magnesium (Mg)-Dissolved (mg/L)	57.2	90.9	224	
	Manganese (Mn)-Dissolved (mg/L)	0.211	0.0137	0.0354	
	Mercury (Hg)-Dissolved (mg/L)	_{DLM}	<0.0000050	<0.0000050	
	Molybdenum (Mo)-Dissolved (mg/L)	0.0055	0.0010	0.0024	
	Nickel (Ni)-Dissolved (mg/L)	0.0035	0.0015	DLA <0.0025	
	Phosphorus (P)-Dissolved (mg/L)	2.09	<0.30	<0.30	
	Potassium (K)-Dissolved (mg/L)	44.3	34.7	65.5	
	Selenium (Se)-Dissolved (mg/L)	0.00137	0.00010	0.00026	
	Silicon (Si)-Dissolved (mg/L)	4.56	0.23	0.48	
	Silver (Ag)-Dissolved (mg/L)	<0.000020	<0.000020	DLA <0.000050	

L1946645 CONTD.... PAGE 4 of 7 29-JUN-17 18:49 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1946645-1 Surface Water 21-JUN-17 11:15 COMMONAGE DRAINAGE POND	L1946645-2 Surface Water 21-JUN-17 11:15 DAVIDSON POND	L1946645-3 Surface Water 21-JUN-17 11:15 ROSE'S POND	
Grouping	Analyte				
WATER					
Dissolved Metals	Sodium (Na)-Dissolved (mg/L)	136	431	615	
	Strontium (Sr)-Dissolved (mg/L)	1.09	0.807	0.814	
	Thallium (TI)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	
	Tin (Sn)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	
	Uranium (U)-Dissolved (mg/L)	0.00620	0.00552	0.00597	
	Vanadium (V)-Dissolved (mg/L)	0.00161	<0.0010	DLA <0.0025	
	Zinc (Zn)-Dissolved (mg/L)	0.0394	<0.0050	<0.0050	
Aggregate Organics	BOD (mg/L)	13.4	<2.0	<2.0	
-	COD (mg/L)	261	68	54	

QC Samples with Qualifiers & Comments:

L1946645 CONTD.... PAGE 5 of 7 29-JUN-17 18:49 (MT) Version: FINAL

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L1946645-1, -2, -3
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1946645-1, -2, -3
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1946645-1, -2, -3
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L1946645-1, -2, -3
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L1946645-1, -2, -3
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L1946645-1, -2, -3
Matrix Spike	Barium (Ba)-Total	MS-B	L1946645-1, -2, -3
Matrix Spike	Calcium (Ca)-Total	MS-B	L1946645-1, -2, -3
Matrix Spike	Copper (Cu)-Total	MS-B	L1946645-1, -2, -3
Matrix Spike	Magnesium (Mg)-Total	MS-B	L1946645-1, -2, -3
Matrix Spike	Sodium (Na)-Total	MS-B	L1946645-1, -2, -3
Matrix Spike	Strontium (Sr)-Total	MS-B	L1946645-1, -2, -3
Matrix Spike	Total Nitrogen	MS-B	L1946645-2, -3
Matrix Spike	Total Nitrogen	MS-B	L1946645-2, -3
Matrix Spike	Total Nitrogen	MS-B	L1946645-2, -3
Matrix Spike	Total Nitrogen	MS-B	L1946645-1
Qualifiers for Individual Paran	neters Listed:		

Qualifier Description DLA Detection Limit adjusted for required dilution DLS Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity. DLM Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity). MS-B Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

Matrix	Test Description	Method Reference**
Water	Biochemical Oxygen Demand- 5 day	APHA 5210 B- BIOCHEMICAL OXYGEN DEMAND
determined t ssolved BOD	by diluting and incubating a sample for a specified time (SOLUBLE) is determined by filtering the sample throu	period, and measuring the oxygen depletion using a ugh a glass fibre filter prior to dilution. Carbonaceous
Water	Chloride in Water by IC	EPA 300.1 (mod)
ed by Ion Ch	rromatography with conductivity and/or UV detection.	
Water	Chemical Oxygen Demand by Colorimetric	APHA 5220 D. CHEMICAL OXYGEN DEMAND
		gen Demand (COD)". Chemical oxygen demand is
Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
using proced	lures adapted from APHA Method 2510 "Conductivity".	Conductivity is determined using a conductivity
Water	Conductivity Screen (Internal Use Only)	APHA 2510
uctivity wher	e required during preparation of other tests - e.g. TDS,	metals, etc.
Water	E.coli by Colilert	APHA METHOD 9223
The sample s and then th	is mixed with a mixture hydrolyzable substrates and the number of wells exhibiting a positive response are co	en sealed in a multi-well packet. The packet is
Water	Hardness	APHA 2340B
Water	Diss. Mercury in Water by CVAAS or CVAFS	APHA 3030B/EPA 1631E (mod)
		dation using bromine monochloride prior to reduction
Water	Total Mercury in Water by CVAAS or CVAFS	EPA 1631E (mod)
	Water using proceed determined I solved BOD by adding a Water ed by Ion Ch Water using proceed dreflux colou Water using proceed Water using proceed The sample s and then th pability table. Water otal Hardness gnesium cond Water (0.45 um), pr analyzed by	Water Biochemical Oxygen Demand- 5 day using procedures adapted from APHA Method 5210 B - "Biochemic: determined by diluting and incubating a sample for a specified time solved BOD (SOLUBLE) is determined by filtering the sample through by adding a nitrification inhibitor to the diluted sample prior to incub Water Chloride in Water by IC ed by Ion Chromatography with conductivity and/or UV detection. Water Chemical Oxygen Demand by Colorimetric using procedures adapted from APHA Method 5220 "Chemical Oxygen deflux colourimetric method. Water Conductivity (Automated) using procedures adapted from APHA Method 2510 "Conductivity". Water Conductivity Screen (Internal Use Only) uctivity where required during preparation of other tests - e.g. TDS, Water E.coli by Colilert using procedures adapted from APHA Method 9223 "Enzyme Subst The sample is mixed with a mixture hydrolyzable substrates and the s and then the number of wells exhibiting a positive response are constability table. Water Hardness otal Hardness) is calculated from the sum of Calcium and Magnesiu unserimentations are preferentially used for the hardness calculated from the sum of Calcium and Magnesiu (0.45 um), preserved with hydrochloric acid, then un

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS or CVAFS. MET-D-CCMS-VA Water Dissolved Metals in Water by CRC ICPMS APHA 3030B/6020A (mod) Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. EPA 200.2/6020A (mod) **MET-T-CCMS-VA** Water Total Metals in Water by CRC ICPMS Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. N-T-COL-VA Water Total Nitrogen in water by Colour APHA4500-P(J)/NEMI9171/USGS03-4174 This analysis is carried out using procedures adapted from APHA Method 4500-P (J) "Persulphate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus" and National Environmental Methods Index - Nemi method 5735. Water Ammonia in Water by Fluorescence APHA 4500 NH3-NITROGEN (AMMONIA) NH3-F-VA This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al. NH3-F-VA Water Ammonia in Water by Fluorescence J. ENVIRON, MONIT., 2005, 7, 37-42, RSC This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et aL Water Nitrite in Water by IC (Low Level) EPA 300.1 (mod) NO2-L-IC-N-VA Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. NO3-L-IC-N-VA Water Nitrate in Water by IC (Low Level) EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H pH Value This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode It is recommended that this analysis be conducted in the field. Diss. Orthophosphate in Water by Colour APHA 4500-P Phosphorus PO4-DO-COL-VA Water This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples. **TCOLI-COLI-ENV-VA** Water Total coliform by Colilert APHA METHOD 9223 This analysis is carried out using procedures adapted from APHA Method 9223 "Enzyme Substrate Coliform Test". E. coli and Total Coliform are determined simultaneously. The sample is mixed with a mixture hydrolyzable substrates and then sealed in a multi-well packet. The packet is incubated for 18 or 24 hours and then the number of wells exhibiting a positive response are counted. The final result is quantified by a statistical estimation of bacteria density (most probable number). Water TKN in Water (Calculation) BC MOE LABORATORY MANUAL (2005) **TKN-CALC-VA** Total Kjeldahl Nitrogen is a calculated parameter. Total Kjeldahl Nitrogen (calc) = Total Nitrogen - [Nitrite (as N) + Nitrate (as N)]. TSS-VA Water Total Suspended Solids by Gravimetric APHA 2540 D - GRAVIMETRIC This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples. ** ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

 	· .	- <u>-</u>	
 L1946645-C	OFC		

-

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC # _____

_		1
Page	^{of}	 ľ

Report To		Report F	ormat / Distribut	ion		Serv	ice R	eque	sted	(Rush	for ro	utine a	analys	is sub	ject to	availa	bility)
Company:	City of Kelowna	Standard								·		s - Busi					
Contact:	Marcia Browne	PDF	✓Excel	Digital	Fax										ALS to C	onfirm	TAT
Address:	2720 John Hindle Drive. Kelowna BC V1V2C5	Email 1:	mbrowne@kelo	wna ca		OErr	ergenc	y (1-2	Bus. D	ays) •	100%	Surcha	rge - Co	ontact	ALS to (Confirm	TAT
		Email 2:	mlewis@kelowr			- OSa	me Day	or We	ekend	Emerg	ency -	Contac	t ALS t	o Conf	îm TAT		
Phone:	250-469-8796 Fax: 250-862-3342	Email 3:	metholanoi						-			sis Re					
Invoice To	Same as Report ? Ves No		roject Informatio			Pie	ase in	dicat	e belo				· · · · · · · · · · · · · · · · · · ·		oth (F	P.F	/P) [
	Invoice with Report? Yes V No	Job #:	1186-202 PON		· · ·	-								. 1			
Company:		PO / AFE	520747														
Contact:		LSD:															
Address:																	
Phone:	Fax:	Quote #:								nía		z	- 1				1
							sle		Soli	Ammonia		Ě	z	ر د			Î
	Monsense	ALS Contact:	Dean Watt	Sampler:		etais	ed metals	8	om, E.	TDS, Ar	٩.	Total Nitrogen, TKN	NO2-N, NO3-N	Total hardnes:			pH Number of Contrinent
Sample #	Sample Identification (This description will appear on the report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Total metals	Dissolved	BOD,COD	. Coliform,	TSS, TI	0-P04-P	otal N	02-N	otal ha	БĊ	Chloride	Hall
	Commonage Drainage Pond		21/06/17	11:15	Surface Water	L ⊢ X	X	×	⊥ X	×	X	×	X	×		X	X
	Davidson Pond		21/06/17	10:30	Surface Water	х	X	х	X	X	Х	Х	x	x	x	x	x
	Rose's Pond		21/06/17	10:00	Surface Water	X	X	х	X	x	X	Х	X	х	x	X	x
			~										-			-	
	Please return cooler and icepacks with replacement bottles a	ad put the	s .						_								\top
	4 40 mL - 6 pack holder (styro)pl	ease.	1										·			-+	
			-														
4. 													-				
1. T. I.										_							
																-+	
2																	\neg
	Special Instructions / Regulations with water or lan	d use (CCM	AE-Freshwater A	quatic Life/BC	CSR - Commerc	al/AB	Tier	1 - N	atura	l, etc) / Ha	zardo	ous D	etail	\$		
	CCME/ BC WQG guidelines for both Davidson Pond and Rose											nage F	Pond.	Plea	se retu	urn co	oler, i
packs and re	eplacment bottles and preservatives. Thank you TSD has bee Failure to complete all							<u> </u>			mg/L						
	By the use of this form the user ackn	•	•							e Fy	el te	Ь					
	Also provided on another Excel tab are the ALS location	+	-		•				•				mon	anal	vses.		
THE REAL	SHIPMENT RELEASE (Client Use)															1)2	i i d
Released b			Date:	Time:	Temperature:		fied b		. :94212	Date			Time				vations
) IP	HIN 2 2 201	8:45Ar	1 2 ℃											es /	
1		· - ·	1 2011 7 7 701		n 7 MC										10	f Yes	add Sl

ŕ.

Dean Watt, B.Sc. CITY OF KELOWNA KEL400

CITY OF KELOWNA ATTN: Marcia Browne Glenmore Landfill 2720 John Hindle Drive Kelowna BC V1V 2C5 Date Received:27-JUL-17Report Date:10-AUG-17 14:10 (MT)Version:FINAL

Client Phone: 250-469-8796

Certificate of Analysis

Lab Work Order #: L1965494 Project P.O. #: 520747 Job Reference: 1186-202 POND C of C Numbers: Legal Site Desc:

Dean Watt, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1965494 CONTD.... PAGE 2 of 7 10-AUG-17 14:10 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1965494-1 Surface Water 26-JUL-17 11:00 COMMONAGE DRAINAGE POND	L1965494-2 Surface Water 26-JUL-17 10:20 DAVIDSON POND	L1965494-3 Surface Water 26-JUL-17 10:40 ROSE'S POND
Grouping	Analyte			
WATER				
Physical Tests	Conductivity (uS/cm)	1070	3010	4930
	Hardness (as CaCO3) (mg/L)	279	560	1220
	рН (рН)	8.20	8.74	8.43
	Total Suspended Solids (mg/L)	4.9	6.1	9.3
	Total Dissolved Solids (mg/L)	679	2120	3600
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	3.29	0.0160	0.0104
	Chloride (Cl) (mg/L)	105	309	377
	Nitrate (as N) (mg/L)	0.356	old states = 0.10	old states = 0.10
	Nitrite (as N) (mg/L)	0.106	old States = 0.020	DLDS <0.020
	Total Kjeldahl Nitrogen (mg/L)	5.17	1.76	1.58
	Total Nitrogen (mg/L)	5.63	1.76	1.58
	Orthophosphate-Dissolved (as P) (mg/L)	2.05	<0.0010	<0.0010
Bacteriological Tests	E. coli (MPN/100mL)	120	6	1
	Coliform Bacteria - Total (MPN/100mL)	24200	24200	29900
Total Metals	Aluminum (Al)-Total (mg/L)	0.047	0.0122	0.024
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.00050	<0.00050
	Arsenic (As)-Total (mg/L)	0.0015	0.00386	0.00419
	Barium (Ba)-Total (mg/L)	0.035	<0.020	0.020 _{DLA}
	Beryllium (Be)-Total (mg/L)	<0.00010	<0.00020	<0.00050
	Bismuth (Bi)-Total (mg/L)	<0.20	<0.20	<0.20
	Boron (B)-Total (mg/L)	0.14	<0.10	<0.10
	Cadmium (Cd)-Total (mg/L)	<0.000050	<0.000010	<0.000025
	Calcium (Ca)-Total (mg/L)	72.1	54.9	85.4
	Chromium (Cr)-Total (mg/L)	<0.0010	<0.0010	<0.0010 _{DLA}
	Cobalt (Co)-Total (mg/L)	<0.00050	<0.00030	<0.00050 DLA
	Copper (Cu)-Total (mg/L)	0.0043	<0.0010	<0.0025
	Iron (Fe)-Total (mg/L)	0.205	0.033	<0.050
	Lead (Pb)-Total (mg/L)	<0.0010	<0.00050	<0.00050
	Lithium (Li)-Total (mg/L)	0.0131	0.0485	0.0547
	Magnesium (Mg)-Total (mg/L)	28.4	108	255
	Manganese (Mn)-Total (mg/L)	0.183	0.0245	0.0527
	Mercury (Hg)-Total (mg/L)	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Total (mg/L)	0.0044	<0.0010	0.0022 DLA
	Nickel (Ni)-Total (mg/L)	<0.0050	0.0018	<0.0025
	Phosphorus (P)-Total (mg/L)	2.31	<0.30	<0.30
	Potassium (K)-Total (mg/L)	22.6	44.0	79.8

L1965494 CONTD.... PAGE 3 of 7 10-AUG-17 14:10 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1965494-1 Surface Water 26-JUL-17 11:00 COMMONAGE DRAINAGE POND	L1965494-2 Surface Water 26-JUL-17 10:20 DAVIDSON POND	L1965494-3 Surface Water 26-JUL-17 10:40 ROSE'S POND	
Grouping	Analyte				
WATER					
Total Metals	Selenium (Se)-Total (mg/L)	<0.0010	0.00031	0.00030	
	Silicon (Si)-Total (mg/L)	4.11	1.42	1.06	
	Silver (Ag)-Total (mg/L)	<0.000050	0.000486	0.000134	
	Sodium (Na)-Total (mg/L)	103	567	776	
	Strontium (Sr)-Total (mg/L)	0.647	0.753	0.777	
	Thallium (TI)-Total (mg/L)	<0.00020	DLA <0.000020	DLA <0.000050	
	Tin (Sn)-Total (mg/L)	< 0.00050	<0.00050	<0.00050	
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	
	Uranium (U)-Total (mg/L)	0.00306	0.00493	0.00553	
	Vanadium (V)-Total (mg/L)	0.00071	<0.0010	DLA <0.0025	
	Zinc (Zn)-Total (mg/L)	0.0130	DLA <0.0060	DLA <0.015	
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	
	Aluminum (AI)-Dissolved (mg/L)	0.020	<0.0050	<0.0050	
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	
	Arsenic (As)-Dissolved (mg/L)	0.0015	0.00339	0.00410	
	Barium (Ba)-Dissolved (mg/L)	0.036	<0.020	<0.020	
	Beryllium (Be)-Dissolved (mg/L)	<0.00010	DLA <0.00020	DLA <0.00050	
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	
	Boron (B)-Dissolved (mg/L)	0.15	<0.10	<0.10	
	Cadmium (Cd)-Dissolved (mg/L)	<0.000050	DLA <0.000010	DLA <0.000025	
	Calcium (Ca)-Dissolved (mg/L)	65.0	53.6	83.1	
	Chromium (Cr)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	
	Cobalt (Co)-Dissolved (mg/L)	<0.00050	<0.00030	DLA <0.00050	
	Copper (Cu)-Dissolved (mg/L)	0.0020	<0.0010	<0.0010	
	Iron (Fe)-Dissolved (mg/L)	0.104	<0.030	DLA <0.050	
	Lead (Pb)-Dissolved (mg/L)	<0.0010	<0.00050	<0.00050	
	Lithium (Li)-Dissolved (mg/L)	0.0120	0.0487	0.0531	
	Magnesium (Mg)-Dissolved (mg/L)	28.3	103	246	
	Manganese (Mn)-Dissolved (mg/L)	0.171	0.0147	0.00622	
	Mercury (Hg)-Dissolved (mg/L)	<0.0000050	<0.0000050	<0.000050	
	Molybdenum (Mo)-Dissolved (mg/L)	0.0042	<0.0010	0.0020	
	Nickel (Ni)-Dissolved (mg/L)	<0.0050	0.0016	ol.0025	
	Phosphorus (P)-Dissolved (mg/L)	2.45	<0.30	<0.30	
	Potassium (K)-Dissolved (mg/L)	25.4	43.1	78.2	
	Selenium (Se)-Dissolved (mg/L)	<0.0010	0.00019	0.00026	
	Silicon (Si)-Dissolved (mg/L)	4.17	1.32	0.92	

L1965494 CONTD.... PAGE 4 of 7 10-AUG-17 14:10 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1965494-1 Surface Water 26-JUL-17 11:00 COMMONAGE DRAINAGE POND	L1965494-2 Surface Water 26-JUL-17 10:20 DAVIDSON POND	L1965494-3 Surface Water 26-JUL-17 10:40 ROSE'S POND	
Grouping	Analyte				
WATER					
Dissolved Metals	Silver (Ag)-Dissolved (mg/L)	<0.000050	<0.000020	DLA <0.000050	
	Sodium (Na)-Dissolved (mg/L)	108	543	748	
	Strontium (Sr)-Dissolved (mg/L)	0.639	0.712	0.747	
	Thallium (TI)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	
	Tin (Sn)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	
	Uranium (U)-Dissolved (mg/L)	0.00275	0.00453	0.00520	
	Vanadium (V)-Dissolved (mg/L)	0.00062	DLA <0.0010	DLA <0.0025	
	Zinc (Zn)-Dissolved (mg/L)	0.0103	<0.0050	<0.0050	
Aggregate Organics	BOD (mg/L)	<2.0	<2.0	<2.0	
	COD (mg/L)	61	64	63	

Qualifiers for Sample Submission Listed:

Description		
Water sample(s) for dis may be biased low.	solved mercu	ury analysis was not submitted in glass or PTFE container with HCI preservative. Results
dividual Samples Listed:		
Client Sample ID	Qualifier	Description
COMMONAGE DRAINAGE F	WSMD	Water sample(s) for dissolved mercury analysis was not submitted in glass or PTFE container with HCI preservative. Results may be biased low.
	Water sample(s) for dis may be biased low. dividual Samples Listed: Client Sample ID	Water sample(s) for dissolved merce may be biased low. dividual Samples Listed:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)	
Matrix Spike	Barium (Ba)-Total	MS-B	L1965494-1, -2, -3	
Matrix Spike	Calcium (Ca)-Total	MS-B	L1965494-1, -2, -3	
Matrix Spike	Magnesium (Mg)-Total	MS-B	L1965494-1, -2, -3	
Matrix Spike	Sodium (Na)-Total	MS-B	L1965494-1, -2, -3	
Matrix Spike	Strontium (Sr)-Total	MS-B	L1965494-1, -2, -3	
Matrix Spike	Uranium (U)-Total	MS-B	L1965494-1, -2, -3	
Matrix Spike	Total Nitrogen	MS-B	L1965494-1, -2, -3	

Qualifier	Description
DLA	Detection Limit adjusted for required dilution
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
BOD5-VA	Water	Biochemical Oxygen Demand- 5 day	APHA 5210 B- BIOCHEMICAL OXYGEN DEMAND
oxygen demand (BOD) a dissolved oxygen meter.	are determined Dissolved BO	by diluting and incubating a sample for a specified ti	mical Oxygen Demand (BOD)". All forms of biochemical ime period, and measuring the oxygen depletion using a through a glass fibre filter prior to dilution. Carbonaceous neubation.
CL-IC-N-VA	Water	Chloride in Water by IC	EPA 300.1 (mod)
Inorganic anions are ana	alyzed by Ion C	Chromatography with conductivity and/or UV detection	n.
COD-COL-VA	Water	Chemical Oxygen Demand by Colorimetric	APHA 5220 D. CHEMICAL OXYGEN DEMAND
This analysis is carried on determined using the clo			Oxygen Demand (COD)". Chemical oxygen demand is
EC-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is carried of electrode.	out using proce	edures adapted from APHA Method 2510 "Conductivi	ity". Conductivity is determined using a conductivity
EC-SCREEN-VA	Water	Conductivity Screen (Internal Use Only)	APHA 2510
Qualitative analysis of co	onductivity whe	ere required during preparation of other tests - e.g. T	DS, metals, etc.
ECOLI-COLI-ENV-VA	Water	E.coli by Colilert	APHA METHOD 9223
determined simultaneous	sly. The sampl ours and then t	e is mixed with a mixture hydrolyzable substrates and the number of wells exhibiting a positive response are	ubstrate Coliform Test". E. coli and Total Coliform are d then sealed in a multi-well packet. The packet is e counted. The final result is obtained by comparing the
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
		ess) is calculated from the sum of Calcium and Magn ncentrations are preferentially used for the hardness	esium concentrations, expressed in CaCO3 equivalents. calculation.
HG-D-CVAA-VA	Water	Diss. Mercury in Water by CVAAS or CVAFS	APHA 3030B/EPA 1631E (mod)
Water samples are filtere with stannous chloride, a			d-oxidation using bromine monochloride prior to reduction
	Water	Total Margury in Water by CVAAS or CVAES	$\Gamma D \wedge 1621 \Gamma \pmod{2}$

HG-T-CVAA-VA Water Total Mercury in Water by CVAAS or CVAFS

EPA 1631E (mod)

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS or CVAFS. MET-D-CCMS-VA Water Dissolved Metals in Water by CRC ICPMS APHA 3030B/6020A (mod) Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. Total Metals in Water by CRC ICPMS EPA 200.2/6020A (mod) **MET-T-CCMS-VA** Water Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. N-T-COL-VA Water Total Nitrogen in water by Colour APHA4500-P(J)/NEMI9171/USGS03-4174 This analysis is carried out using procedures adapted from APHA Method 4500-P (J) "Persulphate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus" and National Environmental Methods Index - Nemi method 5735. Water Ammonia in Water by Fluorescence APHA 4500 NH3-NITROGEN (AMMONIA) NH3-F-VA This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al. NH3-F-VA Water Ammonia in Water by Fluorescence J. ENVIRON, MONIT., 2005, 7, 37-42, RSC This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et aL Water Nitrite in Water by IC (Low Level) EPA 300.1 (mod) NO2-L-IC-N-VA Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. NO3-L-IC-N-VA Water Nitrate in Water by IC (Low Level) EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H pH Value This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode It is recommended that this analysis be conducted in the field. PO4-DO-COL-VA Water Diss. Orthophosphate in Water by Colour APHA 4500-P Phosphorus This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples. **TCOLI-COLI-ENV-VA** Water Total coliform by Colilert APHA METHOD 9223 This analysis is carried out using procedures adapted from APHA Method 9223 "Enzyme Substrate Coliform Test". E. coli and Total Coliform are determined simultaneously. The sample is mixed with a mixture hydrolyzable substrates and then sealed in a multi-well packet. The packet is incubated for 18 or 24 hours and then the number of wells exhibiting a positive response are counted. The final result is quantified by a statistical estimation of bacteria density (most probable number). TDS-VA Water Total Dissolved Solids by Gravimetric APHA 2540 C - GRAVIMETRIC This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter. TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius. **TKN-CALC-VA** Water TKN in Water (Calculation) BC MOE LABORATORY MANUAL (2005) Total Kjeldahl Nitrogen is a calculated parameter. Total Kjeldahl Nitrogen (calc) = Total Nitrogen - [Nitrite (as N) + Nitrate (as N)]. Water Total Suspended Solids by Gravimetric APHA 2540 D - GRAVIMETRIC TSS-VA This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples. ** ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

VA

ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample. mg/kg wwt - milligrams per kilogram based on wet weight of sample. mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample. mg/L - milligrams per litre. < - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 . www.alsglobal.com

COC #

Report To			Donort	Farmer (/ D) / / /											Pa	age		_of	
Company:	City of Kelowna			Format / Distrib	ution		Ser	vice	Requ	estec	(Rus	h for r	outine	analy	/sis su	biect 1	to avai	ilability	<u></u>
Contact:	Marcia Browne		Stand				-	Regular	r (Stand	dard Tu	rnarou	nd Tim	ies - Bu	Jsiness	Davs)	-			
Address:	2720 John Hindl	le Drive. Kelowna BC V1V2C5		✓ Excel	Digita	alFax	0	Priority	(2-4 B	usiness	Days)	- 50%	Surcha	irge - (Contact	ALS to	Confir	m TAT	
			Email 1				0 1	merge	ncy (1-	-2 Bus.	Days)	- 100%	Surch	arge -	Contac		Conf	irm TA ⁻	——- r
Phone:	250-469-8796	Fax: 250-862-33	Email 2.		vna.ca		09	Same D	ay or V	Veeken	d Emer	rgency	- Conta	act ALS	5 to Con	ofirm T	AT		
Invoice To	Same as Report	? 🗸 Yes 🗌 No											sis Re					<u> </u>	
Hardcopy of	Invoice with Report			Project Informat			Ple	ease i	ndica	te bel	ow Fi	Itered	I, Pres	serve	d or b	oth (F P I	F/P)	
Company:			Job #:	1186-202 PON	ID				Τ	Γ^{-}		T	7		F- 7	[,., .	<u>~</u>	i
Contact:			LSD:	E: 520747						1				-					
Address:			LSD:					1											
Phone:		Fax:															1		S
Lab V	Work Order #		Quote #:							i i j	onia		z						aine
(lab	o use only)		ALS Contact	Dean Watt	Sampler:		्य	Dissolved metals		E. Coli	Ammonia		len, TKN	3-N	ess				Containers
Sample	-	Sample Identification		Date			neta	ved	00	form	TDS,	م	itroc	۶	hardness				r of
#	(T Commonage Dra	his description will appear on t	he report)	(dd-mmm-yy)	Time (hh:mm)	Sample Type	Total metals	Dissol	BOD,COD	T. Coliform,	TSS, T	0-P04-P	Total Nitrogen,	NO2-N, NO3-N	Total ha	EC	Chloride	_	Number
· · ·	Davidson Pond			26/07/17	10:00	Surface Water	X	X	X	X	X	x		X	X	X	- X	TE X	ž
	Rose's Pond			26/07/17	10:20	Surface Water	X	X	X	X	X	x	X	x		X	X		
				26/07/17	10:40	Surface Water	X	X	x	X	x	x	x					X	
		A CONTRACTOR OF A CONTRACTOR O								-^	-+		^	<u>x</u>	X	X	X	X	
	The second se						┨──┤												
	Please return cool	ler and icepacks with replacem	ent bottles and preserve	 à															
(¢	Syringes.															$ \bot $		
				+		+	+-+					-+							
												T					-+	-+-	
	and the second s	and a second														-+-	-+-	-+	-1
								+		-		-+-	-+-						_
	Special Instr	ructions / Regulations with w delines for both Davidson Pond	ater or land use (CCM	E-Freshwater Ac	Juatic Life/BC	CSP. Commonsi													
Please use CC	CME/ BC WQG gui	delines for both Davidson Pono d preservatives. Thank you TS	d and Rose's Pond for T	otal Metals Analy		CSR - Commerci	al/AB	Tier 1	- Na	tural,	etc) /	Haza	ardou	is De	tails				
acks and repl	lacment bottles and	d preservatives. Thank you TS Failure to co	SD has been added to the	he list of parameter	ers. Please use	e using BC CSR g	uidelir	les fo	r Con	nmona	age D	raina	ge Po	nd. P	lease	eretu:	rn coc	oler , i	ce
		i anute to C(UNDIELE all nortions of	this form moved	alass a later		_			00	o i mg	9/1.						, .	
	Also provided on	By the use of this form the another Excel tab are the Al	user acknowledges a	nd agrees with th	ne Terms and (Conditions as pr	ahivo	LEGI	BLY.	roto	-	1 4 . 1							
	SHIPMENT RELE	another Excel tab are the Al ASE (client use)		, phone numbers	s and sample d	container / prese	rvatio)/ho	ldina	time	⊏xcel table	i tab.							
Released by:		Date (dd-mmm-yy) Time (hh-mm)			N (lab use only)			SHIF	MEN	TVE	RIEIC	NTIC		nalys b use	es.			
· . ·		Date (dd-mmm-yy) Time (hh-mm)	Received by:	Date:	Time:		Verifie	d by:	<u> </u>		ate:			ime:	D USE			- 41	
			AMANRYS	27-07-17	9.50	2		- 71			u.u.		''	THE.			bserva ∋s / No	ations o ?	÷
						<u> </u>												dd Sil	

CITY OF KELOWNA ATTN: Marcia Browne Glenmore Landfill 2720 John Hindle Drive Kelowna BC V1V 2C5 Date Received:01-SEP-17Report Date:11-SEP-17 18:00 (MT)Version:FINAL

Client Phone: 250-469-8796

Certificate of Analysis

Lab Work Order #: L1984896 Project P.O. #: 520747 Job Reference: 1186-202 POND C of C Numbers: Legal Site Desc:

Dean Watt, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1984896 CONTD.... PAGE 2 of 7 11-SEP-17 18:00 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1984896-1 Surface Water 31-AUG-17 11:23 COMMONAGE DRAINAGE POND	L1984896-2 Surface Water 31-AUG-17 12:25 DAVIDSON POND	L1984896-3 Surface Water 31-AUG-17 11:10 ROSE'S POND	
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (uS/cm)	913	3150	4890	
	Hardness (as CaCO3) (mg/L)	226	556	1230	
	pH (pH)	8.20	8.96	8.72	
	Total Suspended Solids (mg/L)	9.1	4.1	9.7	
	Total Dissolved Solids (mg/L)	600	2250	3910	
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	1.38	0.0198	0.0117	
	Chloride (Cl) (mg/L)	104	348	444	
	Nitrate (as N) (mg/L)	0.314	<0.10	old states	
	Nitrite (as N) (mg/L)	0.0230	<0.020	DLDS <0.020	
	Total Kjeldahl Nitrogen (mg/L)	2.83	2.24	1.64	
	Total Nitrogen (mg/L)	3.17	2.24	1.64	
	Orthophosphate-Dissolved (as P) (mg/L)	0.929	0.0010	<0.0010	
Bacteriological Tests	E. coli (MPN/100mL)	480	<10	10	
	Coliform Bacteria - Total (MPN/100mL)	>24196	9800	17300	
Total Metals	Aluminum (AI)-Total (mg/L)	0.108	0.0174	0.0218	
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.00050	0.00057	
	Arsenic (As)-Total (mg/L)	0.00130	0.00342	0.00483	
	Barium (Ba)-Total (mg/L)	0.035	<0.020	0.021	
	Beryllium (Be)-Total (mg/L)	<0.00010	<0.00010	<0.00010	
	Bismuth (Bi)-Total (mg/L)	<0.20	<0.20	<0.20	
	Boron (B)-Total (mg/L)	0.15	<0.10	<0.10	
	Cadmium (Cd)-Total (mg/L)	0.0000249	0.0000052	<0.0000050	
	Calcium (Ca)-Total (mg/L)	55.6	50.2	81.3	
	Chromium (Cr)-Total (mg/L)	<0.0010	<0.0010	<0.0010	
	Cobalt (Co)-Total (mg/L)	0.00033	<0.00030	<0.00030	
	Copper (Cu)-Total (mg/L)	0.0039	<0.0010	<0.0010	
	Iron (Fe)-Total (mg/L)	0.170	0.041	<0.030	
	Lead (Pb)-Total (mg/L)	<0.00050	<0.00050	<0.00050	
	Lithium (Li)-Total (mg/L)	0.0105	0.0447	0.0471	
	Magnesium (Mg)-Total (mg/L)	23.1	110	277	
	Manganese (Mn)-Total (mg/L)	0.117	0.0222	0.102	
	Mercury (Hg)-Total (mg/L)	0.0000135	<0.000050	<0.0000050	
	Molybdenum (Mo)-Total (mg/L)	0.0043	<0.0010	0.0023	
	Nickel (Ni)-Total (mg/L)	0.0019	0.0018	0.0012	
	Phosphorus (P)-Total (mg/L)	1.22	<0.30	<0.30	
	Potassium (K)-Total (mg/L)	20.8	43.2	82.2	

L1984896 CONTD.... PAGE 3 of 7 11-SEP-17 18:00 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1984896-1 Surface Water 31-AUG-17 11:23 COMMONAGE DRAINAGE POND	L1984896-2 Surface Water 31-AUG-17 12:25 DAVIDSON POND	L1984896-3 Surface Water 31-AUG-17 11:10 ROSE'S POND	
Grouping	Analyte				
WATER					
Total Metals	Selenium (Se)-Total (mg/L)	0.000622	0.000116	0.000267	
	Silicon (Si)-Total (mg/L)	3.68	1.11	1.07	
	Silver (Ag)-Total (mg/L)	0.000036	<0.000020	<0.000020	
	Sodium (Na)-Total (mg/L)	103	559	786	
	Strontium (Sr)-Total (mg/L)	0.551	0.734	0.770	
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	<0.000010	
	Tin (Sn)-Total (mg/L)	<0.00050	<0.00050	<0.00050	
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	
	Uranium (U)-Total (mg/L)	0.00275	0.00551	0.00591	
	Vanadium (V)-Total (mg/L)	0.00136	0.00082	0.00099	
	Zinc (Zn)-Total (mg/L)	0.0226	<0.0050	<0.0050	
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	
	Aluminum (Al)-Dissolved (mg/L)	0.0136	0.0059	0.0051	
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	
	Arsenic (As)-Dissolved (mg/L)	0.00120	0.00337	0.00440	
	Barium (Ba)-Dissolved (mg/L)	0.030	<0.020	<0.020	
	Beryllium (Be)-Dissolved (mg/L)	<0.00010	<0.00010	DLA <0.00050	
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	
	Boron (B)-Dissolved (mg/L)	0.14	<0.10	0.11	
	Cadmium (Cd)-Dissolved (mg/L)	0.0000150	<0.0000050	DLA <0.000025	
	Calcium (Ca)-Dissolved (mg/L)	53.9	50.3	78.9	
	Chromium (Cr)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	
	Cobalt (Co)-Dissolved (mg/L)	<0.00030	<0.00030	DLA <0.00050	
	Copper (Cu)-Dissolved (mg/L)	0.0024	<0.0010	<0.0010	
	Iron (Fe)-Dissolved (mg/L)	<0.030	<0.030	ol.050	
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	
	Lithium (Li)-Dissolved (mg/L)	0.0101	0.0453	0.0491	
	Magnesium (Mg)-Dissolved (mg/L)	22.2	105	250	
	Manganese (Mn)-Dissolved (mg/L)	0.0413	0.0137	0.0316	
	Mercury (Hg)-Dissolved (mg/L)	<0.0000050	<0.0000050	<0.0000050	
	Molybdenum (Mo)-Dissolved (mg/L)	0.0040	<0.0010	0.0021	
	Nickel (Ni)-Dissolved (mg/L)	0.0017	0.0016	<0.0025	
	Phosphorus (P)-Dissolved (mg/L)	1.08	<0.30	<0.30	
	Potassium (K)-Dissolved (mg/L)	19.7	41.0	78.7	
	Selenium (Se)-Dissolved (mg/L)	0.000572	0.000122	0.00025	
	Silicon (Si)-Dissolved (mg/L)	3.33	1.00	0.86	

L1984896 CONTD.... PAGE 4 of 7 11-SEP-17 18:00 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1984896-1 Surface Water 31-AUG-17 11:23 COMMONAGE DRAINAGE POND	L1984896-2 Surface Water 31-AUG-17 12:25 DAVIDSON POND	L1984896-3 Surface Water 31-AUG-17 11:10 ROSE'S POND	
Grouping	Analyte				
WATER					
Dissolved Metals	Silver (Ag)-Dissolved (mg/L)	<0.000020	<0.000020	DLA <0.000050	
	Sodium (Na)-Dissolved (mg/L)	97.3	529	721	
	Strontium (Sr)-Dissolved (mg/L)	0.544	0.728	0.751	
	Thallium (TI)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	
	Tin (Sn)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	
	Uranium (U)-Dissolved (mg/L)	0.00246	0.00524	0.00545	
	Vanadium (V)-Dissolved (mg/L)	0.00096	0.00059	DLA <0.0025	
	Zinc (Zn)-Dissolved (mg/L)	0.0145	<0.0050	<0.0050	
Aggregate Organics	BOD (mg/L)	3.9	<2.0	2.2	
	COD (mg/L)	49	71	75	

Qualifier

Applies to Sample Number(s)

QC Samples with Qualifiers & Comments:

Parameter

QC Type Description

Matrix Spike		Barium (Ba)-Dissolved	MS-B	L1984896-1, -2, -3
Matrix Spike		Calcium (Ca)-Dissolved	MS-B	L1984896-1, -2, -3
Matrix Spike		Magnesium (Mg)-Dissolved	MS-B	L1984896-1, -2, -3
Matrix Spike		Sodium (Na)-Dissolved	MS-B	L1984896-1, -2, -3
Matrix Spike		Strontium (Sr)-Dissolved	MS-B	L1984896-1, -2, -3
Matrix Spike		Total Nitrogen	MS-B	L1984896-2, -3
Matrix Spike		Total Nitrogen	MS-B	L1984896-1
Matrix Spike		Total Nitrogen	MS-B	L1984896-1
Matrix Spike		Total Nitrogen	MS-B	L1984896-1
Qualifiers for I	ndividual Parameters	Listed:		
Qualifier	Description			
DLA	Detection Limit adjust	ed for required dilution		
DLDS		d: Dilution required due to high Dissolve	ed Solide / Electr	ical Conductivity
MS-B		, ,		•
1013-0	Matrix Spike recovery	could not be accurately calculated due	e to high analyte	
est Method Re	eferences:			
LS Test Code	Matrix	Test Description		Method Reference**
BOD5-VA	Water	Biochemical Oxygen Demand- 5 day	у	APHA 5210 B- BIOCHEMICAL OXYGEN DEMAND
oxygen demand dissolved oxyge	d (BOD) are determined en meter. Dissolved BO	I by diluting and incubating a sample fo D (SOLUBLE) is determined by filtering a nitrification inhibitor to the diluted sar	or a specified time g the sample thro	cal Oxygen Demand (BOD)". All forms of biochemical e period, and measuring the oxygen depletion using a sugh a glass fibre filter prior to dilution. Carbonaceous bation.
CL-IC-N-VA	Water	Chloride in Water by IC		EPA 300.1 (mod)
-	s are analyzed by lon C	Chromatography with conductivity and/c	or UV detection.	
-	s are analyzed by Ion C Water	Chromatography with conductivity and/o Chemical Oxygen Demand by Color		APHA 5220 D. CHEMICAL OXYGEN DEMAND
Inorganic anions COD-COL-VA This analysis is	Water	Chemical Oxygen Demand by Color edures adapted from APHA Method 522	imetric	APHA 5220 D. CHEMICAL OXYGEN DEMAND ygen Demand (COD)". Chemical oxygen demand is
Inorganic anions COD-COL-VA This analysis is	Water carried out using proce	Chemical Oxygen Demand by Color edures adapted from APHA Method 522	imetric	
Inorganic anions COD-COL-VA This analysis is determined usin EC-PCT-VA	Water carried out using proce ng the closed reflux colo Water	Chemical Oxygen Demand by Color edures adapted from APHA Method 522 purimetric method. Conductivity (Automated)	imetric 20 "Chemical Ox	ygen Demand (COD)". Chemical oxygen demand is
Inorganic anions COD-COL-VA This analysis is determined usin EC-PCT-VA This analysis is	Water carried out using proce ng the closed reflux colo Water carried out using proce	Chemical Oxygen Demand by Color edures adapted from APHA Method 522 purimetric method. Conductivity (Automated)	imetric 20 "Chemical Ox 10 "Conductivity"	ygen Demand (COD)". Chemical oxygen demand is APHA 2510 Auto. Conduc.
Inorganic anions COD-COL-VA This analysis is determined usin EC-PCT-VA This analysis is electrode. EC-SCREEN-VA	Water carried out using proce ng the closed reflux colo Water carried out using proce Water	Chemical Oxygen Demand by Color edures adapted from APHA Method 522 burimetric method. Conductivity (Automated) edures adapted from APHA Method 251	rimetric 20 "Chemical Ox 10 "Conductivity" Pnly)	ygen Demand (COD)". Chemical oxygen demand is APHA 2510 Auto. Conduc. . Conductivity is determined using a conductivity APHA 2510
Inorganic anions COD-COL-VA This analysis is determined usin EC-PCT-VA This analysis is electrode. EC-SCREEN-VA Qualitative analy	Water carried out using proce ng the closed reflux colo Water carried out using proce Water ysis of conductivity whe	Chemical Oxygen Demand by Color edures adapted from APHA Method 522 burimetric method. Conductivity (Automated) edures adapted from APHA Method 251 Conductivity Screen (Internal Use O	rimetric 20 "Chemical Ox 10 "Conductivity" Pnly)	ygen Demand (COD)". Chemical oxygen demand is APHA 2510 Auto. Conduc. . Conductivity is determined using a conductivity APHA 2510
Inorganic anions COD-COL-VA This analysis is determined usin EC-PCT-VA This analysis is electrode. EC-SCREEN-VA Qualitative analy ECOLI-COLI-EN This analysis is determined simulation included for 18	Water carried out using proce ng the closed reflux colo Water carried out using proce Water lysis of conductivity whe V-VA Water carried out using proce ultaneously. The sample	Chemical Oxygen Demand by Color edures adapted from APHA Method 522 burimetric method. Conductivity (Automated) edures adapted from APHA Method 251 Conductivity Screen (Internal Use O ere required during preparation of other E.coli by Colilert edures adapted from APHA Method 922 le is mixed with a mixture hydrolyzable the number of wells exhibiting a positive	imetric 20 "Chemical Ox 10 "Conductivity" nly) • tests - e.g. TDS 23 "Enzyme Sub substrates and t	ygen Demand (COD)". Chemical oxygen demand is APHA 2510 Auto. Conduc. . Conductivity is determined using a conductivity APHA 2510 , metals, etc.
Inorganic anions COD-COL-VA This analysis is determined usin EC-PCT-VA This analysis is electrode. EC-SCREEN-VA Qualitative analy ECOLI-COLI-EN This analysis is determined simulation included for 18	Water carried out using proce ing the closed reflux colo Water carried out using proce Water lysis of conductivity whe V-VA Water carried out using proce ultaneously. The samp 3 or 24 hours and then to ses to a probability table	Chemical Oxygen Demand by Color edures adapted from APHA Method 522 burimetric method. Conductivity (Automated) edures adapted from APHA Method 251 Conductivity Screen (Internal Use O ere required during preparation of other E.coli by Colilert edures adapted from APHA Method 922 le is mixed with a mixture hydrolyzable the number of wells exhibiting a positive	imetric 20 "Chemical Ox 10 "Conductivity" nly) • tests - e.g. TDS 23 "Enzyme Sub substrates and t	ygen Demand (COD)". Chemical oxygen demand is APHA 2510 Auto. Conduc. . Conductivity is determined using a conductivity APHA 2510 , metals, etc. APHA METHOD 9223 strate Coliform Test". E. coli and Total Coliform are hen sealed in a multi-well packet. The packet is
Inorganic anions COD-COL-VA This analysis is determined usin C-PCT-VA This analysis is electrode. C-SCREEN-VA Qualitative analysis COLI-COLI-EN This analysis is determined simulated for 18 positive respons IARDNESS-CAL Hardness (also	Water carried out using proce ing the closed reflux colo Water carried out using proce Water tysis of conductivity whe V-VA Water carried out using proce ultaneously. The sample 3 or 24 hours and then i ses to a probability table LC-VA Water known as Total Hardne	Chemical Oxygen Demand by Color edures adapted from APHA Method 522 burimetric method. Conductivity (Automated) edures adapted from APHA Method 251 Conductivity Screen (Internal Use O ere required during preparation of other E.coli by Colilert edures adapted from APHA Method 922 le is mixed with a mixture hydrolyzable the number of wells exhibiting a positive e. Hardness	imetric 20 "Chemical Ox 10 "Conductivity" only) tests - e.g. TDS 23 "Enzyme Sub substrates and t e response are c	ygen Demand (COD)". Chemical oxygen demand is APHA 2510 Auto. Conduc. . Conductivity is determined using a conductivity APHA 2510 , metals, etc. APHA METHOD 9223 strate Coliform Test". E. coli and Total Coliform are nen sealed in a multi-well packet. The packet is ounted. The final result is obtained by comparing the APHA 2340B um concentrations, expressed in CaCO3 equivalents.
Inorganic anions COD-COL-VA This analysis is determined usin C-PCT-VA This analysis is electrode. C-SCREEN-VA Qualitative analysis COLI-COLI-EN This analysis is determined simulated for 18 positive respons IARDNESS-CAL Hardness (also	Water carried out using proce ing the closed reflux colo Water carried out using proce Water tysis of conductivity whe V-VA Water carried out using proce ultaneously. The sample 3 or 24 hours and then i ses to a probability table LC-VA Water known as Total Hardne	Chemical Oxygen Demand by Color edures adapted from APHA Method 522 burimetric method. Conductivity (Automated) edures adapted from APHA Method 251 Conductivity Screen (Internal Use O ere required during preparation of other E.coli by Colilert edures adapted from APHA Method 922 le is mixed with a mixture hydrolyzable the number of wells exhibiting a positive e. Hardness ess) is calculated from the sum of Calci	imetric 20 "Chemical Ox 10 "Conductivity" (10) tests - e.g. TDS 23 "Enzyme Sub substrates and t e response are c ium and Magnesi the hardness ca	ygen Demand (COD)". Chemical oxygen demand is APHA 2510 Auto. Conduc. . Conductivity is determined using a conductivity APHA 2510 , metals, etc. APHA METHOD 9223 strate Coliform Test". E. coli and Total Coliform are nen sealed in a multi-well packet. The packet is ounted. The final result is obtained by comparing the APHA 2340B um concentrations, expressed in CaCO3 equivalents.
Inorganic anions COD-COL-VA This analysis is determined usin EC-PCT-VA This analysis is electrode. EC-SCREEN-VA Qualitative analysis ECOLI-COLI-EN This analysis is determined simulated for 18 positive response IARDNESS-CAL Hardness (also Dissolved Calcin IG-D-CVAA-VA Water samples	Water carried out using proce ing the closed reflux colo Water carried out using proce Water tysis of conductivity whe V-VA Water carried out using proce ultaneously. The samp 3 or 24 hours and then ses to a probability table LC-VA Water known as Total Hardne um and Magnesium co Water	Chemical Oxygen Demand by Color edures adapted from APHA Method 522 burimetric method. Conductivity (Automated) edures adapted from APHA Method 251 Conductivity Screen (Internal Use O ere required during preparation of other E.coli by Colilert edures adapted from APHA Method 922 le is mixed with a mixture hydrolyzable the number of wells exhibiting a positive e. Hardness ess) is calculated from the sum of Calci incentrations are preferentially used for Diss. Mercury in Water by CVAAS o preserved with hydrochloric acid, then u	imetric 20 "Chemical Ox 10 "Conductivity" only) tests - e.g. TDS 23 "Enzyme Sub- substrates and t e response are c ium and Magnesi the hardness ca or CVAFS	ygen Demand (COD)". Chemical oxygen demand is APHA 2510 Auto. Conduc. . Conductivity is determined using a conductivity APHA 2510 , metals, etc. APHA METHOD 9223 strate Coliform Test". E. coli and Total Coliform are hen sealed in a multi-well packet. The packet is ounted. The final result is obtained by comparing the APHA 2340B um concentrations, expressed in CaCO3 equivalents. Iculation.
Inorganic anions COD-COL-VA This analysis is determined usin EC-PCT-VA This analysis is electrode. EC-SCREEN-VA Qualitative analysis ECOLI-COLI-EN This analysis is determined simulated for 18 positive response IARDNESS-CAL Hardness (also Dissolved Calcin IG-D-CVAA-VA Water samples	Water carried out using proce ing the closed reflux color Water carried out using proce water tysis of conductivity whe V-VA Water carried out using proce ultaneously. The samp 3 or 24 hours and then ses to a probability table LC-VA Water known as Total Hardne um and Magnesium co Water are filtered (0.45 um), p	Chemical Oxygen Demand by Color edures adapted from APHA Method 522 burimetric method. Conductivity (Automated) edures adapted from APHA Method 251 Conductivity Screen (Internal Use O ere required during preparation of other E.coli by Colilert edures adapted from APHA Method 922 le is mixed with a mixture hydrolyzable the number of wells exhibiting a positive e. Hardness ess) is calculated from the sum of Calci incentrations are preferentially used for Diss. Mercury in Water by CVAAS o preserved with hydrochloric acid, then u	imetric 20 "Chemical Ox 10 "Conductivity" (nly) tests - e.g. TDS 23 "Enzyme Sub- substrates and t e response are c ium and Magnes the hardness ca or CVAFS undergo a cold-o	ygen Demand (COD)". Chemical oxygen demand is APHA 2510 Auto. Conduc. . Conductivity is determined using a conductivity APHA 2510 , metals, etc. APHA METHOD 9223 strate Coliform Test". E. coli and Total Coliform are hen sealed in a multi-well packet. The packet is ounted. The final result is obtained by comparing the APHA 2340B um concentrations, expressed in CaCO3 equivalents. Iculation. APHA 3030B/EPA 1631E (mod)
Inorganic anions COD-COL-VA This analysis is determined usin C-PCT-VA This analysis is electrode. C-SCREEN-VA Qualitative analysis COLI-COLI-EN This analysis is determined simulation incubated for 18 positive respons IARDNESS-CAL Hardness (also Dissolved Calcin IG-D-CVAA-VA Water samples with stannous col IG-T-CVAA-VA	Water carried out using proce ing the closed reflux color Water carried out using proce water tysis of conductivity whe V-VA Water carried out using proce ultaneously. The sample 3 or 24 hours and then ses to a probability table LC-VA Water known as Total Hardne um and Magnesium color Water are filtered (0.45 um), p thoride, and analyzed b	Chemical Oxygen Demand by Color edures adapted from APHA Method 522 burimetric method. Conductivity (Automated) edures adapted from APHA Method 251 Conductivity Screen (Internal Use O ere required during preparation of other E.coli by Colilert edures adapted from APHA Method 922 le is mixed with a mixture hydrolyzable the number of wells exhibiting a positive e. Hardness ess) is calculated from the sum of Calci incentrations are preferentially used for Diss. Mercury in Water by CVAAS o preserved with hydrochloric acid, then u by CVAAS or CVAFS. Total Mercury in Water by CVAAS o	imetric 20 "Chemical Ox 10 "Conductivity" only) tests - e.g. TDS 23 "Enzyme Sub substrates and t e response are c ium and Magnes the hardness ca or CVAFS undergo a cold-o	ygen Demand (COD)". Chemical oxygen demand is APHA 2510 Auto. Conduc. Conductivity is determined using a conductivity APHA 2510 , metals, etc. APHA METHOD 9223 strate Coliform Test". E. coli and Total Coliform are hen sealed in a multi-well packet. The packet is ounted. The final result is obtained by comparing the APHA 2340B um concentrations, expressed in CaCO3 equivalents. Iculation. APHA 3030B/EPA 1631E (mod) xidation using bromine monochloride prior to reduction
Inorganic anions COD-COL-VA This analysis is determined usin C-PCT-VA This analysis is electrode. C-SCREEN-VA Qualitative analysis COLI-COLI-EN This analysis is determined simulation incubated for 18 positive respons IARDNESS-CAL Hardness (also Dissolved Calcin IG-D-CVAA-VA Water samples with stannous col IG-T-CVAA-VA	Water carried out using proce ing the closed reflux colo Water carried out using proce Water tysis of conductivity whe V-VA Water carried out using proce ultaneously. The sample 3 or 24 hours and then i ses to a probability table LC-VA Water known as Total Hardne um and Magnesium co Water are filtered (0.45 um), p shloride, and analyzed b Water undergo a cold-oxidatio	Chemical Oxygen Demand by Color edures adapted from APHA Method 522 burimetric method. Conductivity (Automated) edures adapted from APHA Method 251 Conductivity Screen (Internal Use O ere required during preparation of other E.coli by Colilert edures adapted from APHA Method 922 le is mixed with a mixture hydrolyzable the number of wells exhibiting a positive e. Hardness ess) is calculated from the sum of Calci incentrations are preferentially used for Diss. Mercury in Water by CVAAS o preserved with hydrochloric acid, then u by CVAAS or CVAFS. Total Mercury in Water by CVAAS o	imetric 20 "Chemical Ox 10 "Conductivity" only) tests - e.g. TDS 23 "Enzyme Sub substrates and t e response are c ium and Magnes the hardness ca or CVAFS undergo a cold-o or CVAFS	ygen Demand (COD)". Chemical oxygen demand is APHA 2510 Auto. Conduc. Conductivity is determined using a conductivity APHA 2510 metals, etc. APHA METHOD 9223 strate Coliform Test". E. coli and Total Coliform are nen sealed in a multi-well packet. The packet is ounted. The final result is obtained by comparing the APHA 2340B um concentrations, expressed in CaCO3 equivalents. Iculation. APHA 3030B/EPA 1631E (mod) kidation using bromine monochloride prior to reduction EPA 1631E (mod)
Inorganic anions COD-COL-VA This analysis is determined usin C-PCT-VA This analysis is electrode. C-SCREEN-VA Qualitative analysis COLI-COLI-EN This analysis is determined simulated for 18 positive respons IARDNESS-CAL Hardness (also Dissolved Calcid IG-D-CVAA-VA Water samples with stannous cl IG-T-CVAA-VA Water samples MET-D-CCMS-VA	Water carried out using proce mg the closed reflux colo Water carried out using proce wysis of conductivity whe V-VA Water carried out using proce ultaneously. The samp 3 or 24 hours and then ses to a probability table LC-VA Water known as Total Hardne um and Magnesium co Water are filtered (0.45 um), p chloride, and analyzed b Water undergo a cold-oxidated	Chemical Oxygen Demand by Color edures adapted from APHA Method 522 burimetric method. Conductivity (Automated) edures adapted from APHA Method 251 Conductivity Screen (Internal Use O ere required during preparation of other E.coli by Colilert edures adapted from APHA Method 922 le is mixed with a mixture hydrolyzable the number of wells exhibiting a positive e. Hardness ess) is calculated from the sum of Calci incentrations are preferentially used for Diss. Mercury in Water by CVAAS o preserved with hydrochloric acid, then u by CVAAS or CVAFS. Total Mercury in Water by CVAAS o on using bromine monochloride prior to	imetric 20 "Chemical Ox 10 "Conductivity" (10) tests - e.g. TDS 23 "Enzyme Sub substrates and t e response are c ium and Magnes the hardness ca or CVAFS undergo a cold-o or CVAFS reduction with s ICPMS	ygen Demand (COD)". Chemical oxygen demand is APHA 2510 Auto. Conduc. Conductivity is determined using a conductivity APHA 2510 metals, etc. APHA METHOD 9223 strate Coliform Test". E. coli and Total Coliform are nen sealed in a multi-well packet. The packet is ounted. The final result is obtained by comparing the APHA 2340B um concentrations, expressed in CaCO3 equivalents. Iculation. APHA 3030B/EPA 1631E (mod) xidation using bromine monochloride prior to reduction EPA 1631E (mod) tannous chloride, and analyzed by CVAAS or CVAFS. APHA 3030B/6020A (mod)
Inorganic anions COD-COL-VA This analysis is determined usin C-PCT-VA This analysis is electrode. C-SCREEN-VA Qualitative analysis COLI-COLI-EN This analysis is determined simulation incubated for 18 positive respons IARDNESS-CAL Hardness (also Dissolved Calcin IG-D-CVAA-VA Water samples MET-D-CCMS-V/ Water samples	Water carried out using proce ing the closed reflux color Water carried out using proce water tysis of conductivity whe V-VA Water carried out using proce ultaneously. The sample 3 or 24 hours and then ses to a probability table LC-VA Water known as Total Hardne um and Magnesium co Water are filtered (0.45 um), j thoride, and analyzed b Water undergo a cold-oxidation A Water are filtered (0.45 um), j	Chemical Oxygen Demand by Color edures adapted from APHA Method 522 burimetric method. Conductivity (Automated) edures adapted from APHA Method 251 Conductivity Screen (Internal Use O ere required during preparation of other E.coli by Colilert edures adapted from APHA Method 922 le is mixed with a mixture hydrolyzable the number of wells exhibiting a positive e. Hardness ess) is calculated from the sum of Calci incentrations are preferentially used for Diss. Mercury in Water by CVAAS of preserved with hydrochloric acid, then u by CVAAS or CVAFS. Total Mercury in Water by CVAAS of on using bromine monochloride prior to Dissolved Metals in Water by CRC I	imetric 20 "Chemical Ox 10 "Conductivity" (10) tests - e.g. TDS 23 "Enzyme Sub substrates and t e response are c ium and Magnes the hardness ca or CVAFS undergo a cold-o. or CVAFS reduction with s ICPMS d by CRC ICPMS	ygen Demand (COD)". Chemical oxygen demand is APHA 2510 Auto. Conduc. Conductivity is determined using a conductivity APHA 2510 metals, etc. APHA METHOD 9223 strate Coliform Test". E. coli and Total Coliform are nen sealed in a multi-well packet. The packet is ounted. The final result is obtained by comparing the APHA 2340B um concentrations, expressed in CaCO3 equivalents. Iculation. APHA 3030B/EPA 1631E (mod) kidation using bromine monochloride prior to reduction EPA 1631E (mod) tannous chloride, and analyzed by CVAAS or CVAFS. APHA 3030B/6020A (mod)
Inorganic anions COD-COL-VA This analysis is determined usin C-PCT-VA This analysis is electrode. C-SCREEN-VA Qualitative analysis COLI-COLI-EN This analysis is determined simulation incubated for 18 positive respons IARDNESS-CAL Hardness (also Dissolved Calcin IG-D-CVAA-VA Water samples MET-D-CCMS-V/ Water samples	Water carried out using proce mg the closed reflux colo Water carried out using proce water tysis of conductivity whe V-VA Water carried out using proce ultaneously. The sample or 24 hours and then ses to a probability table LC-VA Water known as Total Hardne um and Magnesium co Water are filtered (0.45 um), p chloride, and analyzed b Water undergo a cold-oxidated A Water are filtered (0.45 um), p on (re: Sulfur): Sulfide a	Chemical Oxygen Demand by Color edures adapted from APHA Method 522 burimetric method. Conductivity (Automated) edures adapted from APHA Method 251 Conductivity Screen (Internal Use O ere required during preparation of other E.coli by Colilert edures adapted from APHA Method 922 le is mixed with a mixture hydrolyzable the number of wells exhibiting a positive e. Hardness ess) is calculated from the sum of Calci incentrations are preferentially used for Diss. Mercury in Water by CVAAS o preserved with hydrochloric acid, then u by CVAAS or CVAFS. Total Mercury in Water by CVAAS o on using bromine monochloride prior to Dissolved Metals in Water by CRC I	imetric 20 "Chemical Ox 10 "Conductivity" (10) tests - e.g. TDS 23 "Enzyme Sub substrates and t e response are c ium and Magnes the hardness ca or CVAFS undergo a cold-o or CVAFS reduction with s ICPMS d by CRC ICPMS ecovered by this	ygen Demand (COD)". Chemical oxygen demand is APHA 2510 Auto. Conduc. Conductivity is determined using a conductivity APHA 2510 metals, etc. APHA METHOD 9223 strate Coliform Test". E. coli and Total Coliform are nen sealed in a multi-well packet. The packet is ounted. The final result is obtained by comparing the APHA 2340B um concentrations, expressed in CaCO3 equivalents. Iculation. APHA 3030B/EPA 1631E (mod) kidation using bromine monochloride prior to reduction EPA 1631E (mod) tannous chloride, and analyzed by CVAAS or CVAFS. APHA 3030B/6020A (mod)

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

APHA4500-P(J)/NEMI9171/USGS03-4174 N-T-COL-VA Water Total Nitrogen in water by Colour This analysis is carried out using procedures adapted from APHA Method 4500-P (J) "Persulphate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus" and National Environmental Methods Index - Nemi method 5735. Ammonia in Water by Fluorescence APHA 4500 NH3-NITROGEN (AMMONIA) NH3-F-VA Water This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Roval Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al. NH3-F-VA Water Ammonia in Water by Fluorescence J. ENVIRON, MONIT., 2005, 7, 37-42, RSC This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al. NO2-L-IC-N-VA Water Nitrite in Water by IC (Low Level) EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. NO3-L-IC-N-VA Water Nitrate in Water by IC (Low Level) EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H pH Value This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode It is recommended that this analysis be conducted in the field. PO4-DO-COL-VA Water Diss. Orthophosphate in Water by Colour APHA 4500-P Phosphorus This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples. Arsenic (5+), at elevated levels, is a positive interference on colourimetric phosphate analysis. **TCOLI-COLI-ENV-VA** Water Total coliform by Colilert APHA METHOD 9223 This analysis is carried out using procedures adapted from APHA Method 9223 "Enzyme Substrate Coliform Test". E. coli and Total Coliform are determined simultaneously. The sample is mixed with a mixture hydrolyzable substrates and then sealed in a multi-well packet. The packet is incubated for 18 or 24 hours and then the number of wells exhibiting a positive response are counted. The final result is quantified by a statistical estimation of bacteria density (most probable number). **TDS-VA** Water Total Dissolved Solids by Gravimetric APHA 2540 C - GRAVIMETRIC This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter. TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius. **TKN-CALC-VA** Water TKN in Water (Calculation) BC MOE LABORATORY MANUAL (2005) Total Kjeldahl Nitrogen is a calculated parameter. Total Kjeldahl Nitrogen (calc) = Total Nitrogen - [Nitrite (as N) + Nitrate (as N)]. Total Suspended Solids by Gravimetric APHA 2540 D - GRAVIMETRIC TSS-VA Water This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples. ** ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC #

Page of

Report To		.		Report F	ormat / Distribu	ution		10.00	dee F						<u> </u>		_			
Company:	City of Kelowna			Standar													oject to) avail	lability))
Contact:	Marcia Browne		,,	PDF		Digita								ies - Bu						
Address:	2720 John Hindle	Drive. Kelowna	BC V1V2C5	Email 1:			l 🗌 Fax							Surcha						
				Email 2;	mbrowne@kel mlewis@kelow														irm TAT	
Phone:	250-469-8796	Fax	: 250-862-3342		IIIIewis@keiOw	<u>ma.ca</u>			ame Da	ay or v	veeken		_	- Conta	_	_	ifirm TA	λT -		
Invoice To	Same as Report		No	Entail 0.	Project Informat	ion				ndian	4a 4a			sis R						
Hardcopy of	Invoice with Report		✓ No	Job #:	1186-202 PON			Fie	ase ii	naica T			Iterec	l, Pres	serve	dorb	oth (F	, Р, Г	-7P)	
Company:				PO / AFE					<u> </u>	<u> </u>			<u> </u>	<u> </u>						
Contact:				LSD:				-												
Address:								ł											i l	ю
Phone:		Fax										jä.								ner
Lab V	Vork Order #			Quote #:		т			si		Coli	Ammonia		TKN					1	ntai
(lab	use only)			ALS Contact:	Dean Watt	Sampler:		metals	d metals	0	ш			Nitrogen,	N03-N	hardness				of Containers
Sample #	(TI	-	Identification vill appear on th	e report)	Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Total me	Dissolved	BOD,COD	. Coliform,	TSS, TDS,	0-РО4-Р	Total Niti	NO2-N, NO3-N	Total har	EC	Chloride	Hd	Number (
	Commonage Drai	nage Pond			31/0817	11:23	Surface Water	x	X	X	X	X	X	X	X	x	X	x	<u> </u>	<u> </u>
	Davidson Pond				31/08/17	12:25	Surface Water	x	<u> </u>	x	x	X	X	X	x	x	x	x	^ X	
	Rose's Pond				31/08/17	11:10	Surface Water	X		X	X	X	X	x	x	$\frac{x}{x}$	x	x	x	
																~+		<u> </u>	<u>^</u>	
					<u> </u>	<u> </u>														
	Please return cool	er and icepacks	with replaceme	ent bottles																
	and preservatives.				<u> </u>															
· · ·																		-1		
			· · · · ·											- +					\rightarrow	
		· · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·								-							
	Special Inst	ructions / Real	lations with w	ater or land use (CCM	F-Freshwater A	quatic Life/BC	CSP Commonsi		·											
Please use CO	CME/ BC WQG qui	delines for both	Davidson Pond	and Roso's Bond for T	intel Mateia Anal		CSR - Coninierci		Her	1 - N	atura	, etc	/ Ha	zardo	ous D	etails	i 			
packs and rep	lacment bottles an	d preservatives.	. Thank you TS	I and Rose's Pond for T SD has been added to t	he list of parame	iters. Please us	e using BC CSR g	juideli imit fo	ines fo	or Co		nage	Drain	age F	ond.	Pleas	se reti	nu cc	oler,	ice
			Failure to co	omplete all portions of	this form may	delay analysis.	Please fill in this	s forn	n LEG	SIBLY	<u> </u>	0011	ng/L							
		By the use o	f this form the	user acknowledges a	nd agrees with	the Terms and	Conditions as pr	ovide	d on	2 501	harate	e Exc	el tal	b.						
	Also provided or	n another Exce	I tab are the AL	S location addresses	, phone numbe	rs and sample	container / prese	rvatio	on / h	oldin	g tim	e tab	le for	r com	mon	analy	ses.			
Released by:	SHIPWENT RELE	ASE (client use	<u>)</u>	SHIP	IENT RECEPTI	ON (lab use onl	y)							ICATI				y)		\neg
iveleased by:		Date (dd-mmm-yy)	TIME (hh-mm)	Received by:	Date:	Time:	Temperature:	Verif	ied by			Date			Time		T	Obser	vatior	ıs:
				PAUL	sep 1	08:45	7.7, Initoc											Yes/I		
						L	5.6 8.4										ENE 2		add S	эF

CITY OF KELOWNA ATTN: Marcia Browne Glenmore Landfill 2720 John Hindle Drive Kelowna BC V1V 2C5 Date Received:21-SEP-17Report Date:28-SEP-17 16:13 (MT)Version:FINAL

Client Phone: 250-469-8796

Certificate of Analysis

Lab Work Order #: L1994913 Project P.O. #: 520747 Job Reference: 1186-202 POND C of C Numbers: Legal Site Desc:

Comments: ADDITIONAL 27-SEP-17 17:36

Dean Watt, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1994913 CONTD.... PAGE 2 of 7 28-SEP-17 16:13 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1994913-1 Surface Water 20-SEP-17 11:00 COMMONAGE DRAINAGE POND	L1994913-2 Surface Water 20-SEP-17 10:45 DAVIDSONN POND	L1994913-3 Surface Water 20-SEP-17 10:30 ROSE'S POND	
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (uS/cm)	1020	3290	5130	
	Hardness (as CaCO3) (mg/L)	254	535	1080	
	рН (рН)	8.19	8.78	8.67	
	Total Suspended Solids (mg/L)	11.6	6.6	15.2	
	Total Dissolved Solids (mg/L)	668	2320	4020	
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	6.55	0.0140	0.0097	
	Chloride (Cl) (mg/L)	104	340	443	
	Nitrate (as N) (mg/L)	0.150	old states = 0.10	old states = 0.10	
	Nitrite (as N) (mg/L)	0.106	нтр <0.020	DLDS <0.020	
	Total Kjeldahl Nitrogen (mg/L)	11.7	1.88	1.85	
	Total Nitrogen (mg/L)	12.0	1.88	1.85	
	Orthophosphate-Dissolved (as P) (mg/L)	1.69	<0.0010	<0.0010	
Bacteriological Tests	E. coli (MPN/100mL)	70	1	2	
	Coliform Bacteria - Total (MPN/100mL)	3260	2420 DLA	2480 DLA	
Total Metals	Aluminum (Al)-Total (mg/L)	0.026	<0.0060	<0.015	
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.00050	0.00056	
	Arsenic (As)-Total (mg/L)	0.0020	0.00321	0.00422	
	Barium (Ba)-Total (mg/L)	0.030	<0.020	<0.020	
	Beryllium (Be)-Total (mg/L)	<0.0050	<0.00020	DLA <0.00050	
	Bismuth (Bi)-Total (mg/L)	<0.20	<0.20	<0.20	
	Boron (B)-Total (mg/L)	0.16	<0.10	<0.10	
	Cadmium (Cd)-Total (mg/L)	<0.000050	<0.000010	DLA <0.000025	
	Calcium (Ca)-Total (mg/L)	57.7	47.0	71.3	
	Chromium (Cr)-Total (mg/L)	<0.00050	<0.0010	<0.0010 _{DLA}	
	Cobalt (Co)-Total (mg/L)	<0.00050	<0.00030	<0.00050 DLA	
	Copper (Cu)-Total (mg/L)	0.0062	<0.0010	<0.0025	
	Iron (Fe)-Total (mg/L)	0.108	<0.030	<0.050	
	Lead (Pb)-Total (mg/L)	<0.0010	<0.00050	<0.00050	
	Lithium (Li)-Total (mg/L)	<0.050	0.0427	0.0503	
	Magnesium (Mg)-Total (mg/L)	23.6	97.2	231	
	Manganese (Mn)-Total (mg/L)	0.095	0.0306	0.0169	
	Mercury (Hg)-Total (mg/L)	<0.00020	<0.0000050	<0.0000050	
	Molybdenum (Mo)-Total (mg/L)	0.0042	<0.0010	0.0020	
	Nickel (Ni)-Total (mg/L)	<0.0050	0.0017	<0.0025	
	Phosphorus (P)-Total (mg/L)	1.84	<0.30	<0.30	
	Potassium (K)-Total (mg/L)	28.9	40.1	70.4	

L1994913 CONTD.... PAGE 3 of 7 28-SEP-17 16:13 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1994913-1 Surface Water 20-SEP-17 11:00 COMMONAGE DRAINAGE POND	L1994913-2 Surface Water 20-SEP-17 10:45 DAVIDSONN POND	L1994913-3 Surface Water 20-SEP-17 10:30 ROSE'S POND	
Grouping	Analyte				
WATER					
Total Metals	Selenium (Se)-Total (mg/L)	<0.0010	0.00010	0.00027	
	Silicon (Si)-Total (mg/L)	3.92	1.48	0.96	
	Silver (Ag)-Total (mg/L)	<0.000050	<0.000020	DLA <0.000050	
	Sodium (Na)-Total (mg/L)	109	518	704	
	Strontium (Sr)-Total (mg/L)	0.569	0.706	0.686	
	Thallium (TI)-Total (mg/L)	<0.00020	DLA <0.000020	DLA <0.000050	
	Tin (Sn)-Total (mg/L)	<0.030	<0.00050	<0.00050	
	Titanium (Ti)-Total (mg/L)	<0.050	<0.010	<0.010	
	Uranium (U)-Total (mg/L)	0.00262	0.00502	0.00560	
	Vanadium (V)-Total (mg/L)	<0.030	DLA <0.0010	DLA <0.0025	
	Zinc (Zn)-Total (mg/L)	0.0177	DLA <0.0060	DLA <0.015	
Dissolved Metals	Dissolved Mercury Filtration Location	LAB	LAB	LAB	
	Dissolved Metals Filtration Location	LAB	LAB	LAB	
	Aluminum (AI)-Dissolved (mg/L)	0.031	<0.0050	<0.0050	
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	<0.00050	0.00050	
	Arsenic (As)-Dissolved (mg/L)	0.0021	0.00318	0.00377	
	Barium (Ba)-Dissolved (mg/L)	0.031	<0.020	<0.020	
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	DLA <0.00020	DLA <0.00050	
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	
	Boron (B)-Dissolved (mg/L)	0.18	<0.10	<0.10	
	Cadmium (Cd)-Dissolved (mg/L)	0.000059	DLA <0.000010	DLA <0.000025	
	Calcium (Ca)-Dissolved (mg/L)	61.3	52.3	71.3	
	Chromium (Cr)-Dissolved (mg/L)	<0.00050	<0.0010	<0.0010	
	Cobalt (Co)-Dissolved (mg/L)	<0.00050	<0.00030	DLA <0.00050	
	Copper (Cu)-Dissolved (mg/L)	DTC 0.0085	<0.0010	<0.0010	
	Iron (Fe)-Dissolved (mg/L)	0.112	<0.030	DLA <0.050	
	Lead (Pb)-Dissolved (mg/L)	<0.0010	<0.00050	<0.00050	
	Lithium (Li)-Dissolved (mg/L)	<0.050	0.0482	0.0497	
	Magnesium (Mg)-Dissolved (mg/L)	24.6	98.2	220	
	Manganese (Mn)-Dissolved (mg/L)	<0.010	0.00770	0.00138	
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.0000050	<0.0000050	
	Molybdenum (Mo)-Dissolved (mg/L)	0.0041	<0.0010	0.0020	
	Nickel (Ni)-Dissolved (mg/L)	<0.0050	0.0015	DLA <0.0025	
	Phosphorus (P)-Dissolved (mg/L)	1.94	<0.30	<0.30	
	Potassium (K)-Dissolved (mg/L)	30.3	41.6	68.4	
	Selenium (Se)-Dissolved (mg/L)	<0.0010	DLA <0.00010	DLA <0.00025	
	Silicon (Si)-Dissolved (mg/L)	3.91	1.49	0.97	

L1994913 CONTD.... PAGE 4 of 7 28-SEP-17 16:13 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1994913-1 Surface Water 20-SEP-17 11:00 COMMONAGE DRAINAGE POND	L1994913-2 Surface Water 20-SEP-17 10:45 DAVIDSONN POND	L1994913-3 Surface Water 20-SEP-17 10:30 ROSE'S POND	
Grouping	Analyte				
WATER					
Dissolved Metals	Silver (Ag)-Dissolved (mg/L)	<0.000050	<0.000020	DLA <0.000050	
	Sodium (Na)-Dissolved (mg/L)	108	527	675	
	Strontium (Sr)-Dissolved (mg/L)	0.572	0.770	0.672	
	Thallium (TI)-Dissolved (mg/L)	<0.000010	<0.00020	<0.00020	
	Tin (Sn)-Dissolved (mg/L)	<0.030	<0.00050	<0.00050	
	Titanium (Ti)-Dissolved (mg/L)	<0.050	<0.010	<0.010	
	Uranium (U)-Dissolved (mg/L)	0.00254	0.00541	0.00557	
	Vanadium (V)-Dissolved (mg/L)	<0.030	DLA <0.0010	DLA <0.0025	
	Zinc (Zn)-Dissolved (mg/L)	0.0206	<0.0050	<0.0050	
Aggregate Organics	BOD (mg/L)	3.0	<2.0	2.1	
	COD (mg/L)	121	72	80	

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Method Blank	Molybdenum (Mo)-Dissolved	MB-LOR	L1994913-1, -2, -3
Method Blank	Aluminum (AI)-Total	MB-LOR	L1994913-1, -2, -3
Method Blank	Barium (Ba)-Total	MB-LOR	L1994913-1, -2, -3
Method Blank	Calcium (Ca)-Total	MB-LOR	L1994913-1, -2, -3
Method Blank	Lead (Pb)-Total	MB-LOR	L1994913-1, -2, -3
Method Blank	Magnesium (Mg)-Total	MB-LOR	L1994913-1, -2, -3
Method Blank	Manganese (Mn)-Total	MB-LOR	L1994913-1, -2, -3
Vethod Blank	Sodium (Na)-Total	MB-LOR	L1994913-1, -2, -3
Vatrix Spike	Mercury (Hg)-Total	MS-B	L1994913-2, -3
Vatrix Spike	Mercury (Hg)-Total	MS-B	L1994913-1
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1994913-1
Matrix Spike	Silicon (Si)-Dissolved	MS-B	L1994913-1
Vatrix Spike	Sodium (Na)-Dissolved	MS-B	L1994913-1
Matrix Spike	Total Nitrogen	MS-B	L1994913-1
Matrix Spike	Orthophosphate-Dissolved (as P)	MS-B	L1994913-1, -2, -3
Matrix Spike	Orthophosphate-Dissolved (as P)	MS-B	L1994913-1, -2, -3

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLA	Detection Limit adjusted for required dilution
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
DTC	Dissolved concentration exceeds total. Results were confirmed by re-analysis.
HTD	Hold time exceeded for re-analysis or dilution, but initial testing was conducted within hold time.
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
BOD5-VA	Water	Biochemical Oxygen Demand- 5 day	APHA 5210 B- BIOCHEMICAL OXYGEN DEMAND
oxygen demand (BOD) a dissolved oxygen meter.	are determined Dissolved BC	d by diluting and incubating a sample for a specified	hemical Oxygen Demand (BOD)". All forms of biochemical d time period, and measuring the oxygen depletion using a e through a glass fibre filter prior to dilution. Carbonaceous p incubation.
CL-IC-N-VA	Water	Chloride in Water by IC	EPA 300.1 (mod)
Inorganic anions are ana	alyzed by Ion (Chromatography with conductivity and/or UV detect	ion.
COD-COL-VA	Water	Chemical Oxygen Demand by Colorimetric	APHA 5220 D. CHEMICAL OXYGEN DEMAND
This analysis is carried of determined using the clo			al Oxygen Demand (COD)". Chemical oxygen demand is
EC-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is carried of electrode.	out using proce	edures adapted from APHA Method 2510 "Conduct	ivity". Conductivity is determined using a conductivity
EC-SCREEN-VA	Water	Conductivity Screen (Internal Use Only)	APHA 2510
Qualitative analysis of co	onductivity who	ere required during preparation of other tests - e.g.	TDS, metals, etc.
ECOLI-COLI-ENV-VA	Water	E.coli by Colilert	APHA METHOD 9223
determined simultaneou	sly. The samp ours and then	le is mixed with a mixture hydrolyzable substrates a the number of wells exhibiting a positive response	Substrate Coliform Test". E. coli and Total Coliform are and then sealed in a multi-well packet. The packet is are counted. The final result is obtained by comparing the
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
		ess) is calculated from the sum of Calcium and Mag ncentrations are preferentially used for the hardness	gnesium concentrations, expressed in CaCO3 equivalents. ss calculation.

HG-D-CVAA-VA

Diss. Mercury in Water by CVAAS or CVAFS API

APHA 3030B/EPA 1631E (mod)

Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United

Dissolved Hg in Water by CVAFS LOR=50ppt

States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry or atomic absorption spectrophotometry (EPA Method 245.7). Total Mercury in Water by CVAAS or CVAFS **HG-T-CVAA-VA** Water EPA 1631E (mod) Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS or CVAFS. **HG-TOT-CVAFS-VA** Total Hg in Water by CVAFS LOR=50ppt Water EPA 1631E (mod) This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry or atomic absorption spectrophotometry (EPA Method 245.7). MET-D-CCMS-VA Water Dissolved Metals in Water by CRC ICPMS APHA 3030B/6020A (mod) Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. **Dissolved Metals in Water by ICPOES** EPA SW-846 3005A/6010B **MET-DIS-ICP-VA** Water This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B). Water Total Metals in Water by CRC ICPMS **MET-T-CCMS-VA** EPA 200.2/6020A (mod) Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. EPA SW-846 3005A/6010B **MET-TOT-ICP-VA** Water Total Metals in Water by ICPOES

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

N-T-COL-VA

APHA4500-P(J)/NEMI9171/USGS03-4174

APHA 4500 NH3-NITROGEN (AMMONIA)

APHA 3030B/EPA 1631E (mod)

This analysis is carried out using procedures adapted from APHA Method 4500-P (J) "Persulphate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus" and National Environmental Methods Index - Nemi method 5735.

NH3-F-VA

Ammonia in Water by Fluorescence

Total Nitrogen in water by Colour

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

NH3-F-VA Water Ammonia in Water by Fluorescence

Water

Water

with stannous chloride, and analyzed by CVAAS or CVAFS.

Water

HG-DIS-CVAFS-VA

J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

NO2-L-IC-N-VA Water Nitrite in Water by IC (Low Level)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-L-IC-N-VAWaterNitrate in Water by IC (Low Level)EPA 300.1 (mod)Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

PH-PCT-VA Water pH by Meter (Automated)

APHA 4500-H pH Value

EPA 300.1 (mod)

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

It is recommended that this analysis be conducted in the field.

L1994913 CONTD.... PAGE 7 of 7 28-SEP-17 16:13 (MT) Version: FINAL

PO4-DO-COL-VA Water Diss. Orthophosphate in Water by Colour APHA 4500-P Phosphorus This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples. Arsenic (5+), at elevated levels, is a positive interference on colourimetric phosphate analysis. APHA METHOD 9223 **TCOLI-COLI-ENV-VA** Water Total coliform by Colilert This analysis is carried out using procedures adapted from APHA Method 9223 "Enzyme Substrate Coliform Test". E. coli and Total Coliform are determined simultaneously. The sample is mixed with a mixture hydrolyzable substrates and then sealed in a multi-well packet. The packet is incubated for 18 or 24 hours and then the number of wells exhibiting a positive response are counted. The final result is quantified by a statistical estimation of bacteria density (most probable number). Water Total Dissolved Solids by Gravimetric APHA 2540 C - GRAVIMETRIC TDS-VA This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius. **TKN-CALC-VA** Water TKN in Water (Calculation) BC MOE LABORATORY MANUAL (2005) Total Kjeldahl Nitrogen is a calculated parameter. Total Kjeldahl Nitrogen (calc) = Total Nitrogen - [Nitrite (as N) + Nitrate (as N)]. TSS-VA Water Total Suspended Solids by Gravimetric APHA 2540 D - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

VA

ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg www - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per kilogram based on ipid-adjusted weight of sample mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to gualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC #

Page ____of ____

· /	Enorument			Report	Format / Distribu	ution		Serv	ice R	eane	sted	(Rush	for ro	utine #	analvs	is sub	ject to	availa	ability)	
Report To	City of Kelowna			Standa			<u> </u>		equiar (,			
Company:	City of Kelowna Marcia Browne	· · · · ·		Standa	Fxcel	Digital	Fax	_	<u> </u>	•		_					ALS to C	Confirm	1 TAT	
Contact:	2720 John Hindle Dri		V1V2C5					_					-		-					
Address:			V1V200	Email 1: Email 2:	Email 1: <u>mbrowne@kelowna.ca</u> Email 2: <u>mlewis@kelowna.ca</u>						Emergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT Same Day or Weekend Emergency - Contact ALS to Confirm TAT									
Phone:	250-469-8796	Eax: 2	50-862-3342	Email 3:							Analysis Request									
Invoice To		✓ Yes			Project Informat	tion		Please indicate below Filtered, Preserved or both (F, P, F/P)												
	f Invoice with Report?	Yes	✓ No	Job #:	1186-202 PON													Τ		
Company:				PO / AF	E: 520747															
Contact:				LSD:				1												
Address:								1												lers
Phone:		Fax:		Quote #	:			1			Coli	Ammonia		TKN						ntair
Leib	Work Order# Cuse only)	Sec.		ALS Contac	Dean Watt	Sampler:		metals	ed metals	8	ш	TDS, Amn	<u>م</u>	Nitrogen, T	NO3-N	Total hardness		Ð		er of Containers
Sample)		Sample Ide description will a		report)	Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Total m	Dissolved	BOD,COD	T. Coliform	TSS, TI	0-PO4-	Total N	NO2-N,	Total h	EC	Chloride	Hd	Number
	Commonage Drainag				20-09-17	11:00	Surface Water	X	X	X	X	X	X	X	X	Χ	X	X	Χ	
	Davidson Pond				20-09-17	10.45	Surface Water	X	x	x	X	X	x	X	х	X	X	X	Х	
	Rose's Pond			, <u>, , , , , , , , , , , , , , , , , , </u>	20-09-17	10:30	Surface Water	x	X	X	X	X	X	X	X	X	X	X	Χ	
						10.30														
		-		• • • • • • • • • • • • • • • • • • •				-					<u> </u>		<u> </u>					
	Please return cooler	and icepacks wi	ith replacemer	nt bottles.																
														-				_		
									↓	-		1	1 -			<u> </u>				
		. <u> </u>				- 							<u> </u>							
												·			<u> </u>					
							L1994913-	COF	C											
												5								
									1		1	I								
	Special Instru	ctions / Regula	tions with wa	iter or land use (CO	CME-Freshwater	Aquatic Life/BC	CSR - Commerc	ial/A	B Tier	r 1 - N	latura	al, etc	c) / Ha	azard	ous I	Detail	s			_
Please use	CCME/ BC WQG guide	elines for both D	avidson Pond	and Rose's Pond fo	r Total Metals An	alysis and contin	ue using BC CSR	guide	lines	for C	ommo	onage	e Drai	nage	Pond	. Plea	ase ret	turn c	cooler	, ice
packs and	replacment bottles and	preservatives. T	hank you TS	D has been added t	o the list of paran	neters. Please us	se lower detection	limit	for Be	rylliu	m <0.	0001	mg/L							
				mplete all portions user acknowledges								te Fx	cel ta	ah						
	Also provided on a	By the use of t	nis torm the ι ab are the Δi	S location address	s and agrees wit	bers and sample	container / pres	ervat	ion / I	holdi	na tir	ne ta	ble fo	or cor	nmoi	n ana	lyses.			
	SHIPMENT RELEA						ty)			S	HIPM	ENT	VERI	FICAT	TION	(lab t	ise on	ly)		
Released	THE PART OF A DESCRIPTION OF A DESCRIPTI	Date (dd-mmm-yy)		Calobran Sugar and the second	Date:	Time:	Temperature:	20	ified t	C. C		Dat	0.0.280.00	1004-014	Tim	N. C. S. N.		Obse	ervati	
1	-	· . · · ·		PAUL	SEP 21	08:40	3.9 00												/ No î s add	
				1100													GENF		_	
							7.6°C										J	_0.00		-
							ት	.4°C												

CITY OF KELOWNA ATTN: Marcia Browne Glenmore Landfill 2720 John Hindle Drive Kelowna BC V1V 2C5 Date Received:01-NOV-17Report Date:17-NOV-17 19:06 (MT)Version:FINAL

Client Phone: 250-469-8796

Certificate of Analysis

Lab Work Order #: L2016326 Project P.O. #: 520747 Job Reference: 1186-202 POND C of C Numbers: Legal Site Desc:

Dean Watt, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2016326 CONTD.... PAGE 2 of 7 17-NOV-17 19:06 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2016326-1 SURFACE WATE 31-OCT-17 10:27 COMMONAGE DRAINAGE POND	L2016326-2 SURFACE WATE 31-OCT-17 11:15 DAVIDSON POND	L2016326-3 SURFACE WATE 31-OCT-17 10:10 ROSE'S POND	
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (uS/cm)	784	3510	5440	
	Hardness (as CaCO3) (mg/L)	107	139	18.8	
	рН (рН)	8.68	8.36	8.49	
	Total Suspended Solids (mg/L)	31.3	16.7	6.1	
	Total Dissolved Solids (mg/L)	481	2270	4080	
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	3.99	0.645	0.0187	
	Chloride (Cl) (mg/L)	73.8	328	443	
	Nitrate (as N) (mg/L)	1.04	<0.10	0.12	
	Nitrite (as N) (mg/L)	0.104	<0.13	old states = 0.020	
	Total Kjeldahl Nitrogen (mg/L)	9.20	2.42	1.70	
	Total Nitrogen (mg/L)	10.3	2.42	1.81	
	Orthophosphate-Dissolved (as P) (mg/L)	2.51	0.0363	<0.0010	
Bacteriological Tests	E. coli (MPN/100mL)	290	9	<1	
	Coliform Bacteria - Total (MPN/100mL)	24200	37	25	
Total Metals	Aluminum (Al)-Total (mg/L)	0.069	0.0143	0.0090	
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.00050	0.00053	
	Arsenic (As)-Total (mg/L)	0.0024	0.00408	0.00442	
	Barium (Ba)-Total (mg/L)	0.023	<0.020	<0.020	
	Beryllium (Be)-Total (mg/L)	<0.0050	<0.00020	<0.00020	
	Bismuth (Bi)-Total (mg/L)	<0.20	<0.20	<0.20	
	Boron (B)-Total (mg/L)	0.16	<0.10	<0.10	
	Cadmium (Cd)-Total (mg/L)	0.000063	<0.000010	<0.000010	
	Calcium (Ca)-Total (mg/L)	41.1	59.3	79.7	
	Chromium (Cr)-Total (mg/L)	0.00063	<0.0010	<0.0010	
	Cobalt (Co)-Total (mg/L)	<0.00050	<0.00030	<0.00030	
	Copper (Cu)-Total (mg/L)	0.0130	<0.0010	<0.0010	
	Iron (Fe)-Total (mg/L)	0.237	0.043	<0.030	
	Lead (Pb)-Total (mg/L)	<0.0010	<0.00050	<0.00050	
	Lithium (Li)-Total (mg/L)	<0.050	0.0472	0.0558	
	Magnesium (Mg)-Total (mg/L)	18.4	119	288	
	Manganese (Mn)-Total (mg/L)	0.137	0.157	0.0514	
	Mercury (Hg)-Total (mg/L)	<0.00020	<0.000050	<0.000050	
	Molybdenum (Mo)-Total (mg/L)	0.0039	<0.0010	0.0019	
	Nickel (Ni)-Total (mg/L)	<0.0050	0.0018	0.0011	
	Phosphorus (P)-Total (mg/L)	3.33	<0.30	<0.30	
	Potassium (K)-Total (mg/L)	25.2	44.3	85.2	

L2016326 CONTD.... PAGE 3 of 7 17-NOV-17 19:06 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2016326-1 SURFACE WATE 31-OCT-17 10:27 COMMONAGE DRAINAGE POND	L2016326-2 SURFACE WATE 31-OCT-17 11:15 DAVIDSON POND	L2016326-3 SURFACE WATE 31-OCT-17 10:10 ROSE'S POND	
Grouping	Analyte				
WATER					
Total Metals	Selenium (Se)-Total (mg/L)	<0.0010	DLA <0.00010	0.00022	
	Silicon (Si)-Total (mg/L)	0.49	2.56	1.17	
	Silver (Ag)-Total (mg/L)	<0.000050	<0.000020	<0.000020	
	Sodium (Na)-Total (mg/L)	81.4	566	825	
	Strontium (Sr)-Total (mg/L)	0.376	0.874	0.737	
	Thallium (TI)-Total (mg/L)	<0.00020	DLA <0.000020	DLA <0.000020	
	Tin (Sn)-Total (mg/L)	<0.030	<0.00050	<0.00050	
	Titanium (Ti)-Total (mg/L)	<0.050	<0.010	<0.010	
	Uranium (U)-Total (mg/L)	0.00134	0.00548	0.00637	
	Vanadium (V)-Total (mg/L)	<0.030	DLA <0.0010	DLA <0.0010	
	Zinc (Zn)-Total (mg/L)	0.0418	DLA <0.0060	DLA <0.0060	
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	
	Aluminum (Al)-Dissolved (mg/L)	<0.010	<0.0050	<0.0050	
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	
	Arsenic (As)-Dissolved (mg/L)	<0.0010	<0.00050	<0.00050	
	Barium (Ba)-Dissolved (mg/L)	0.023	<0.020	<0.020	
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	DLA <0.00020	OLA <0.00020	
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	
	Boron (B)-Dissolved (mg/L)	<0.10	<0.10	<0.10	
	Cadmium (Cd)-Dissolved (mg/L)	<0.000050	DLA <0.000010	DLA <0.000010	
	Calcium (Ca)-Dissolved (mg/L)	28.3	35.5	6.54	
	Chromium (Cr)-Dissolved (mg/L)	<0.00050	<0.0010	<0.0010	
	Cobalt (Co)-Dissolved (mg/L)	<0.00050	<0.00030	<0.00030	
	Copper (Cu)-Dissolved (mg/L)	0.0025	0.0022	<0.0010	
	Iron (Fe)-Dissolved (mg/L)	0.121	<0.030	<0.030	
	Lead (Pb)-Dissolved (mg/L)	<0.0010	<0.00050	<0.00050	
	Lithium (Li)-Dissolved (mg/L)	<0.050	<0.0020	<0.0020	
	Magnesium (Mg)-Dissolved (mg/L)	8.79	12.3	0.61	
	Manganese (Mn)-Dissolved (mg/L)	<0.010	0.00267	0.0161	
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.0000050	<0.0000050	
	Molybdenum (Mo)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	
	Nickel (Ni)-Dissolved (mg/L)	<0.0050	0.0035	<0.0010	
	Phosphorus (P)-Dissolved (mg/L)	3.44	<0.30	<0.30	
	Potassium (K)-Dissolved (mg/L)	2.2	<2.0	<2.0	
	Selenium (Se)-Dissolved (mg/L)	<0.0010	0.00011	DLA <0.00010	
	Silicon (Si)-Dissolved (mg/L)	0.273	2.54	0.37	

L2016326 CONTD.... PAGE 4 of 7 17-NOV-17 19:06 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2016326-1 SURFACE WATE 31-OCT-17 10:27 COMMONAGE DRAINAGE POND	L2016326-2 SURFACE WATE 31-OCT-17 11:15 DAVIDSON POND	L2016326-3 SURFACE WATE 31-OCT-17 10:10 ROSE'S POND	
Grouping	Analyte				
WATER					
Dissolved Metals	Silver (Ag)-Dissolved (mg/L)	<0.000050	<0.000020	<0.000020	
	Sodium (Na)-Dissolved (mg/L)	7.3	10.7	6.7	
	Strontium (Sr)-Dissolved (mg/L)	0.133	0.183	0.0291	
	Thallium (TI)-Dissolved (mg/L)	<0.000010	<0.00020	<0.00020	
	Tin (Sn)-Dissolved (mg/L)	<0.030	<0.00050	<0.00050	
	Titanium (Ti)-Dissolved (mg/L)	<0.050	<0.010	<0.010	
	Uranium (U)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	
	Vanadium (V)-Dissolved (mg/L)	<0.030	DLA <0.0010	DLA <0.0010	
	Zinc (Zn)-Dissolved (mg/L)	0.0233	0.0134	0.0125	
Aggregate Organics	BOD (mg/L)	15.0	2.9	<2.0	
	COD (mg/L)	117	65	62	

QC Samples with Qualifiers & Comments:

L2016326 CONTD.... PAGE 5 of 7 17-NOV-17 19:06 (MT) Version: FINAL

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L2016326-1, -2, -3
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L2016326-1, -2, -3
Matrix Spike	Iron (Fe)-Dissolved	MS-B	L2016326-1, -2, -3
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L2016326-1, -2, -3
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L2016326-1, -2, -3
Matrix Spike	Silicon (Si)-Dissolved	MS-B	L2016326-1, -2, -3
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L2016326-1, -2, -3
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L2016326-1, -2, -3
Matrix Spike	Barium (Ba)-Total	MS-B	L2016326-1, -2, -3
Matrix Spike	Boron (B)-Total	MS-B	L2016326-1, -2, -3
Matrix Spike	Calcium (Ca)-Total	MS-B	L2016326-1, -2, -3
Matrix Spike	Magnesium (Mg)-Total	MS-B	L2016326-1, -2, -3
Matrix Spike	Manganese (Mn)-Total	MS-B	L2016326-1, -2, -3
Matrix Spike	Sodium (Na)-Total	MS-B	L2016326-1, -2, -3
Matrix Spike	Strontium (Sr)-Total	MS-B	L2016326-1, -2, -3
Matrix Spike	Total Nitrogen	MS-B	L2016326-1, -2, -3
Qualifiers for Individual Param	neters Listed:		
Qualifier Description			

DLA	Detection Limit adjusted for required dilution
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**						
BOD5-VA	Water	Biochemical Oxygen Demand- 5 day	APHA 5210 B- BIOCHEMICAL OXYGEN DEMAND						
oxygen demand (BOD) are dissolved oxygen meter. D	e determined issolved BOI	dures adapted from APHA Method 5210 B - "Biochemi by diluting and incubating a sample for a specified time O (SOLUBLE) is determined by filtering the sample thro a nitrification inhibitor to the diluted sample prior to incu	e period, and measuring the oxygen depletion using a bugh a glass fibre filter prior to dilution. Carbonaceous						
CL-IC-N-VA	Water	EPA 300.1 (mod)							
Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.									
COD-COL-VA	Water	Chemical Oxygen Demand by Colorimetric	APHA 5220 D. CHEMICAL OXYGEN DEMAND						
This analysis is carried out determined using the close		dures adapted from APHA Method 5220 "Chemical Ox urimetric method.	ygen Demand (COD)". Chemical oxygen demand is						
EC-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.						
This analysis is carried out electrode.	t using proce	dures adapted from APHA Method 2510 "Conductivity"	. Conductivity is determined using a conductivity						
EC-SCREEN-VA	Water	Conductivity Screen (Internal Use Only)	APHA 2510						
Qualitative analysis of con	ductivity whe	re required during preparation of other tests - e.g. TDS	, metals, etc.						
ECOLI-COLI-ENV-VA	Water	E.coli by Colilert	APHA METHOD 9223						
determined simultaneously	/. The sample rs and then the	dures adapted from APHA Method 9223 "Enzyme Sub e is mixed with a mixture hydrolyzable substrates and t he number of wells exhibiting a positive response are c e.	hen sealed in a multi-well packet. The packet is						
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B						
(ss) is calculated from the sum of Calcium and Magnes acentrations are preferentially used for the hardness ca							
HG-D-CVAA-VA	Water	Diss. Mercury in Water by CVAAS or CVAFS	APHA 3030B/EPA 1631E (mod)						
Water samples are filtered with stannous chloride, and			xidation using bromine monochloride prior to reduction						
HG-DIS-CVAFS-VA	Water	Dissolved Hg in Water by CVAFS LOR=50ppt	APHA 3030B/EPA 1631E (mod)						

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry or atomic absorption spectrophotometry (EPA Method 245.7). Water Total Mercury in Water by CVAAS or CVAFS EPA 1631E (mod) **HG-T-CVAA-VA** Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS or CVAFS. **HG-TOT-CVAFS-VA** Water Total Hg in Water by CVAFS LOR=50ppt EPA 1631E (mod) This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry or atomic absorption spectrophotometry (EPA Method 245.7). MET-D-CCMS-VA Water Dissolved Metals in Water by CRC ICPMS APHA 3030B/6020A (mod) Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. **MET-T-CCMS-VA** Water Total Metals in Water by CRC ICPMS EPA 200.2/6020A (mod) Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. APHA4500-P(J)/NEMI9171/USGS03-4174 N-T-COL-VA Water Total Nitrogen in water by Colour This analysis is carried out using procedures adapted from APHA Method 4500-P (J) "Persulphate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus" and National Environmental Methods Index - Nemi method 5735. NH3-F-VA Water Ammonia in Water by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et aL NO2-L-IC-N-VA Water Nitrite in Water by IC (Low Level) EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. NO3-L-IC-N-VA Water Nitrate in Water by IC (Low Level) EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H pH Value This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode It is recommended that this analysis be conducted in the field. PO4-DO-COL-VA Water Diss. Orthophosphate in Water by Colour APHA 4500-P Phosphorus This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples. Arsenic (5+), at elevated levels, is a positive interference on colourimetric phosphate analysis. **TCOLI-COLI-ENV-VA** Water Total coliform by Colilert APHA METHOD 9223 This analysis is carried out using procedures adapted from APHA Method 9223 "Enzyme Substrate Coliform Test". E. coli and Total Coliform are determined simultaneously. The sample is mixed with a mixture hydrolyzable substrates and then sealed in a multi-well packet. The packet is incubated for 18 or 24 hours and then the number of wells exhibiting a positive response are counted. The final result is quantified by a statistical estimation of bacteria density (most probable number). Water Total Dissolved Solids by Gravimetric APHA 2540 C - GRAVIMETRIC TDS-VA This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius. **TKN-CALC-VA** Water TKN in Water (Calculation) BC MOE LABORATORY MANUAL (2005) Total Kjeldahl Nitrogen is a calculated parameter. Total Kjeldahl Nitrogen (calc) = Total Nitrogen - [Nitrite (as N) + Nitrate (as N)].

TSS-VA

Water Total Suspended Solids by Gravimetric APHA 2540 D - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	

VA

ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample. mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED. ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

::-

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

coc # _____

Page	/ of	2
i ugo		

(ALS) E	Environmen	ital		·												-			-	
Report To				Report Fo	ormat / Distribu	tion		Serv	ice R	eque	sted	(Rush	for ro	utine a	analys	is sub	ject to	availa	ability)	/
Company:	City of Kelowna			Standard	l 🗌 Other			🖲 R(egular (Standa	ard Tur	naroun	d Time	es - Busi	iness E	Days)				
Contact:	Marcia Browne			✓ PDF	🗸 Excel	Digital	🗌 Fax	O Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT												
Address:	2720 John Hindle D	Drive. Kelowna E	BC V1V2C5	Email 1:	mbrowne@kek	owna.ca		O Emergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT O Same Day or Weekend Emergency - Contact ALS to Confirm TAT												
				Email 2:	mlewis@kelow	na.ca		() si	ame Da	y or W	eekend	Emerg	jency -	Contac	ct ALS (to Conf	firm TA	Т		
Phone:	250-469-8796	Fax:	250-862-3342	Email 3:	Email 3: Analysis Reque								·							
invoice To	Same as Report ?	✓ Yes	No No	Client / P	Client / Project Information					idicat	e belo	w Fill	lered,	, Pres	ervec	d or b	oth (F	, P, F	-/P)	
Hardcopy of	Invoice with Report?	🗌 Yes	🗹 No	Job #:	1186-202 PON	D														
Company:				PO / AFE:	520747															
Contact:				LSD:																a.
Address:												æ			. 1		i İ			lers
Phone:		Fax:		Quote #:					<u>م</u>		Coli	Jon		TKN		1				Itair
STATIA.	Work Order # 1994			ALS Contact:	Dean Watt	Sampler:		metals	ed metals	QO	ш Е	TDS, Amn	م	Total Nitrogen, T	NO2-N, NO3-N	hardness		сb		Number of Containers
Sample		-	dentification Il appear on the	report)	Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Total m	Dissolved	BOD,C	T. Colifor	TSS, TI	0-PO4-P	Total N	NO2-N	Total h	ы С	Chloride	Ha	Numba
	Commonage Drain	age Pond			31/10/17	10:27	Surface Water	X	X	X	X	X	X	X	X	X	X	X	X	
	Davidson Pond			., ₂ 0,	31/10/17	11:15	Surface Water	X	X	Х	X	Х	X	X	X	X	X	X	X	
	Rose's Pond					10.10	Surface Water	X	X	Х	X	x	X	X	X	X	X	x	х	
						1.0,0														i
				60 m only							<u> </u>		├──┤	┝──┨		\vdash	┟╍╌┨			
					ie .				V a ta a	Eistera	1 1) , ann - 1) 	1		L	┟━━─┤			
<u> </u>	Please return coole	er and icepacks	with replacement	bottles pier	Ţ	<u>.</u>	↓ \ { { { ! { ! !			111.				 	1	_				
	Thank you.	No pre	servati	ves this			1) I I I I I I I I I I I I I I I I I I I		11111				 							
	. time	11	1 . 1	have lots					L201	632	6-C(DFC		0		ļ				1
		1 100000	<u>~</u> ×											Б	,	-		_		
57 3. C								-	1		r -	l i	1	i –	1 7	{	┟┈╼┫			<u> </u>
A 137 S.			-in	anks			· · · · · · · · · · · · · · · · · · ·						├ ──┤	i l	┝──┤		┝──┨			
<u> </u>	Tryin	<u>g to v</u>	x up s	upplies -			<u> </u>		ļ		ļ									
		0		· ·																
	Special Instr	uctions / Regu	lations with wa	ater or land use (CCN	IE-Freshwater	Aquatic Life/BC	CSR - Commerc	ial/Al	3 Tier	1 - N	latura	I, etc	;) / Ha	izardo	ous C)etail	S			
Please use	CCME/ BC WQG gui	delines for both	Davidson Pond	and Rose's Pond for 1	Total Metals Ana	alysis and continu	ue using BC CSR	guide	lines	for Co	ommo	nage	Drair	nage l	Pond.	. Plea	ise ref	lurn c	ooler	, ice
packs and r	eplacment bottles and	d preservatives.	Thank you TS	D has been added to f	the list of param	eters. Please us	e lower detection	limit f	or Be	rylliur	n <0.0	0001 1	mg/L							
				mplete all portions o																
				user acknowledges a S location addresse:											nmor	n ane!	lveae			
· · · · · · · · · · · · · · · · · · ·						ION (lab:use_on											ise_on		<u> </u>	
Released b		Date (dd-mmm-yy)	·····	Received by:	Date:	Time:	Temperature:	Ver	ified b			Date		<u>ا ديم.</u>	Time				ervati	<u> </u>
	J-				NOVI	08:35	1.2 °C								1			Yes	/ No 🕯	?
1				PAUL	I IMAN I	1 00.23	l r,s ₀C	Ĩ				1			1		ļ	lf Ye	s add	SIF

GENF 20.00 Front

golder.com