
## STANDARD DETAIL DRAWINGS



SIZE OF ROCK AND THICKNESS OF PROTECTION BLANKET THAT WILL RESIST DISPLACEMENT FOR VARIOUS VELOCITIES AND BANKSIDE SLOPES.

## Notes:

- Adapted from report of Sub-committee on slope protection, Am. Soc. Civil Engineers Proc. June 1948.
- 2. Density of stone assumed at 2,640 kg/m .
- 3. Enter graph at known velocity to intersection with desired slope curve. Move horizontally to required riprap class and thickness.
- 4.  $V_M$  = mean stream velocity.
- 5. For parallel flow along tangent bank;  $V_{S} = 2/3 V_{M}$
- 6. For impinging flow against curved bank;  $\rm V_{\mbox{\scriptsize S}}\!=\,4/3~V_{\mbox{\scriptsize M}}$
- 7. For direct impingement on the bank;  $V_S = 2_M V$
- The riprap class No. is the mass (kg) of the 50% rock size (i.e., at least half of the riprap must be heavier than its class mass).
- 9. Do not interpolate between riprap classes. Use the next highest class.

H:\WU\DRAFTING\STD-DWGS\SS-S57

RIPRAP DESIGN CHART

SS-S57